
Vol. 124 (2013) ACTA PHYSICA POLONICA A No. 1
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Soliton evolution in spatially extended Josephson junction is studied for three types of ad hoc structural
potentials describing tunnelling magnetic �ux vortices; symmetric, ratchet and double-well. Setting from the
inline geometry of the junction, the soliton dynamics could be modelled by the perturbed sine-Gordon equation.
Numerical solutions of the latter equation yielded the soliton waves of the �uxon phase, for boundary conditions
imposed on the system upon variation of the dispersion parameter α. It has been found that a change in the
soliton waveform and intensity occurs as α goes higher, in dependence on the functional of the potential and its
symmetry properties. For ratchet and double-well potential at α = 0.5, a time-dependent forcing has been found
to endorse the balance between dispersion and nonlinearity, jointly with enhancing the stability of the soliton wave.
The McLoughlin�Scott perturbation theory has been adopted to show that the system conserves energy due to the
delicate balance between nonlinearity and dispersion, so that the soliton keeps robust as it temporally evolves.
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1. Introduction

The soliton has long been a subject of intensive investi-
gation, since its observation by Scott-Russel in 1834. The
unabated motion of the soliton wave for long distances
as well as its non-dispersive interactions with other soli-
tons, grant unique characteristics to such wave. This phe-
nomenon occurs in various nonlinear systems for which
a competitive and delicate balance between nonlinearity
and dispersion is deemed a key factor for stabilizing the
soliton dynamics [1]. A Josephson junction is inherently
nonlinear and of interesting properties [2], as it allows the
generation of time-varying �elds upon the application of
dc �elds and vice versa [3].

One signi�cant property of the Josephson structure is
that both conjugate charge and �ux participate in the
transport process within the junction. In the �rst case,
a number of the Cooper pairs (bosons) tunnel freely be-
tween the two superconducting electrodes while in the
second, magnetic �ux quanta (�uxons) are contributing.
A quantum mechanical duality between these two vari-
ables exists, and use of such feature in quantum comput-
ing either as charge or �ux qubits has been rising over
the last few years [4].

Studying �uxon dynamics in superconducting junc-
tions has also been of importance for device manipu-
lation. As such, a long (1D-extended) Josephson junc-
tion (LJJ) for which the length L is greater than λJ
(the Josephson penetration depth) is a tantalizing testing
ground for modelling �uxon solitons and nonlinear wave
theory [5]. Investigating solitons generated by �uxon
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dynamics is also promising for diverse electronic appli-
cations, such as �uxon-operated high frequency oscilla-
tors and vortex transistors based on �ux-�ow ampli�ca-
tion [6, 7].

A soliton transistor to function as a NOT gate has been
proposed and successfully experimented. It uses one train
of soliton-like vortices to invalidate the motion of another
train of vortices [8]. The process comprises two LJJs
and a Josephson �uxonic diode so that vortices are in-
jected into the reverse-biased Josephson diode (ON state
of the transistor), and injecting antivortices into the third
LJJ nulli�es vortices prior to reaching the Josephson �ux-
onic diode (OFF state). One-dimensional arrays of the
Josephson junctions have also been extensively investi-
gated according to the sine-Gordon (SG) model which
accounted for the dynamics of charge solitons [9]. Driven
by experimental �ndings [10, 11], the authors identi�ed a
parameter regime of charge solitons within the Coulomb
blockade (insulating) phase of 1D-arrays of coupled JJs.
In this context, a dispersion relation of the soliton was
obtained that is �attening in the outer region of the Bril-
louin zone, associated with simultaneous broadening of
the soliton in the �at band regime, unexpectedly to what
is observed for the Lorentz contraction in the regime of
normal dispersion relation.

There has been growing interest also to perform exper-
iments to monitor the dynamics (current�voltage charac-
teristics) of solitons. Ustinov et al. provided experimen-
tal observation of the unidirectional motion of a topolog-
ical soliton driven by a bi-harmonic time-varying force
of zero mean [12]. The measurements revealed the ex-
istence of ratchet-like dynamics of �uxons in annular
Nb/Al�AlOx/Nb Josephson structures having the annu-
lar geometry when subjected to microwave �elds [13].
Here, the signi�cance of the recti�cation of dc voltage
was the result of the bi-harmonic asymmetric force act-
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ing on the junctions in the absence of dc bias, when no
spatial ratchet potential is available.
Methodical studies on perturbed sine-Gordon objects

can also help understanding the stability of several con-
densed matter systems such as charge-density waves, fer-
romagnetic and antiferromagnetic systems. Since the
solitons are essential in explaining the collective phenom-
ena pertaining to numerous physical systems in one di-
mension [14], it seems important to explore the dynami-
cal characteristics of solitons in di�erent types of spatial
symmetries. In this context, one may consider the motion
of �uxons structurally constrained to spatial potentials of
di�erent kinds.
In this paper the propagation of soliton waves is numer-

ically simulated in a perturbed chain of serially coupled
LJJs representing a transmission line. Even in the sim-
plest case of which a bias current is present, studying the
excitation and stabilisation of �uxon and anti�uxon is
fundamental from the soliton transport perspective. On
the other hand, and for the sake of controlling a nonlinear
dynamical system in practice, one needs to investigate ef-
fects due to external forces, noises, inhomogeneities and
dissipation. For soliton systems like the LJJ with such
e�ects, there have been several and various reported nu-
merical works and perturbative analyses referring to an
interesting scenario: competition of spatial order (soli-
tons) and temporal disorder (chaos) [1, 15]. To investi-
gate such properties we assign three types of ad hoc de-
pendent potentials accounting for the Josephson vortices;
symmetric sinusoidal, asymmetric ratchet and double-
-well potential (dwp). The starting point to explore the
�uxon dynamics is the sine-Gordon equation, which can
be derived for the inline geometry of the Josephson junc-
tion. In a system such as LJJ, this equation provides
well-de�ned multi-soliton solutions and sets the testing
grounds to study fundamental properties of solitons in
nonlinear �eld theories.

2. Modelling solitons in LJJ

The LJJ is of particular importance since it is a sys-
tem for investigating nonlinear phenomena, such as the
arousal of �uxons and anti�uxons, their dynamical mo-
tion, interaction with each other, their scattering, and
collapse. It bears its signi�cance also due to develop-
ing dynamical chaos under small perturbation or excita-
tion at certain parameter space. In LJJ a �uxon carries
a magnetic �ux that is equal to a single �ux quantum
Φ0 = h/2e. This �ux, as known, arises due to the circula-
tion of supercurrent brought about by a Josephson vortex
produced between two superconducting layers separated
by a very thin (nano) dielectric layer. Mathematically,
the �uxon represents a 2π-kink soliton for the quantum
phase di�erence ϕ between the electrodes of the junction.
The fundamental characteristic of LJJ is that it is largely
extended in one dimension or two, where the length l of
the junction in this case is greater than the Josephson
penetration depth λJ, that is greater than the width w
as in Fig. 1 [7].

Fig. 1. Inline geometry of the LJJ, with current ap-
plied perpendicular to the �uxons velocity.

In contrast to the case of the normal junction which
is considered mathematically a point in space and whose
quantum Josephson phase is solely dependent on time,
one must assume the latter phase to depend also on space.

A Josephson junction can basically be con�gured in
di�erent geometries that play a pivotal role in a�ecting
the dynamics of solitons generated within the junction.
Amid the numerous geometries commonly used in study-
ing soliton characteristics there are the overlapping, in-
line, and annular structures [16].

The �rst two con�gurations are analogous that they
are considered to be composed of quasi-1D slices of de�-
nite length. They are fundamentally di�erentiable in the
sense of the way a bias current is applied, so that the
latter is directed perpendicularly in the case of the over-
lapping geometry and parallel to the spatially extended
junction when considered in the inline structure. In prac-
tical sense both con�gurations represent a limiting situ-
ation for real junctions of de�ned length that are used in
experiments, and an amalgamated structure of both, in
fact, exists.

For the case of the annular structure and in the absence
of external magnetic �eld, one may assume a uniform
density of bias current and consider x being the length of
the mean perimeter of the annulus. In this context the
boundary conditions

ϕ(x+ l, t) = ϕ(x, t) + 2πn (1)

render the spatial periodicity of the system, as n, dubbed
the �winding number�, takes a physical interpretation of
being signi�cant to the di�erence in the number of soli-
tons and anti-solitons con�ned within the junction, where
l is the system size. This number contributes to estab-
lishing the necessary prerequisite of quantizing and stabi-
lizing magnetic �ux, in conjunction with the topological
charge Q de�ned as being a conserved quantity with re-
spect to the boundary conditions imposed on the �eld
variable (phase) ϕ, which is expressed as [1]:

Q =
1

2π
[ϕ (∞, t)− ϕ (−∞, t)] . (2)

In the simplest case when n = 1 for which one kink
soliton only exists in the system (Q = 2π), the kink ve-
locity is given by [17]:
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v(t) =
1

Q

∫ L

0

xϕtxdx. (3)

This velocity is of signi�cant interest when considering
the motion of soliton ratchets as energy carriers during
transport processes [18].

The inline geometry of the 1D-extended junctions
shown in Fig. 1 can be modelled via the equivalent circuit
of a transmission line depicted in Fig. 2. In this model,
the line is viewed as being a set of inductively coupled and
serially connected junctions. One may refer to the phase
di�erence at point n at time t between both supercon-
ducting electrodes to be ϕn, using the following terms:
Vn � the voltage between the electrodes, C � the ca-
pacitance of insulating layer, L � the inductance along
the superconducting electrode, in � the current passing
in the inductance, Ic � the critical current of the junc-
tion, If � the forcing current, R � the e�ective ohmic
resistance of the insulator. Consequently, the Josephson
supercurrent IJ due to �uxon motion is straightforwardly
given by

IJ = Ic sin(ϕn(t)). (4)

In addition, the well-known second Josephson equation
relating voltage and phase di�erence can be expressed as

Vn =
Φ0

2π

dϕn
dt

. (5)

Thus one may obtain the following discrete equation:

ϕ̈n = ϕn+1 − 2ϕn + ϕn−1 − Γ 2 sinϕn − I − αϕ̇n. (6)
Converting Eq. (6) to derivatives using the Taylor ex-
pansion and substituting n with x and rearranging, the
soliton equation of the perturbed junction is yielded

ϕxx − ϕtt − Γ 2 sin(ϕ) = αϕt + I, (7)

where α =
√
L/R
√
C and Γ 2 = 2πLIc/Φ0 are param-

eters related to λJ and to the Josephson plasma and
junction characteristic frequencies ωp = (2eIc/~C)1/2,
ωc = (2eIcR/~), respectively.

Fig. 2. Equivalent circuit of the inductively coupled
and serially connected LJJ.

The dynamics of oscillatory soliton waves generated in
the 1D LJJ and associated with current vortices will be
investigated via solutions of Eq. (7). Symmetry issues
related to spatial characteristics of the types of poten-
tial states assigned to junction will also be analysed, as
there exist perturbation terms like the charge injection
current I and the dissipation term αϕt. In the case where
the latter quantities are absent, one obtains the following
commonly known analytical solution of the SG Eq. (7):

ϕ(x, t) = 4 arctan exp (γ(x− vt) + δ) , (8)

which yields the kink and anti-kink solitons, where δ is
a phase shift, v is the soliton velocity and γ2 = 1/1− v2
is a parameter de�ne whether a kink or anti-kink wave
exists in dependence on sign of the square root, +/�,
respectively.

3. Numerical solutions and discussion

The �nite di�erence method [19] has been used for the
sake of numerically solving the partial di�erential Eq. (7).
The adopted algorithm makes use of the implicit scheme
to �nd solutions of the soliton equation via de�ning the
backward di�erence at time tn+1 and a second-order dif-
ference for the space derivative at position xj . This
method provides also stable and convergent solutions on
the required range of computation within relatively rapid
time; a step size equal to 1/20 has been used.

3.1. Fluxon dynamics in a sinus potential

For the case of a symmetric potential, a functional of
the type U(ϕ) = 1 − cos(ϕ) has been considered as the
potential assigned to the tunnelling of �uxons through
the nanoinsulator. Thus Eq. (7) were solved primar-
ily without a forcing current, taking into consideration
variable values (starting from low up to higher values)
of the dissipation parameter α, and �xing Γ 2 which ac-
counts for the coupling intensity of �uxons within the
junction, to −0.055. The initial and boundary condi-
tions which have been chosen where ϕ(−10, t) = 0.035,
ϕ(x, 0) = 0.035, ϕt(10, t) = 0, ϕx(x, 0) = 0.022. Figure 3

Fig. 3. Soliton evolution in a symmetric potential for
di�erent dispersion values: α = 0.01, 0.1, 0.25, 0.5 corre-
sponding to (a), (b), (c), and (d), respectively without
forcing current.
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demonstrates the occurrence and spatio-temporal evolu-
tion of the �uxon soliton for α = 0.01, 0.1, 0.25, 0.5, in (a),
(b), (c) and (d) respectively.

3.2. Fluxon dynamics in a ratchet potential

In this section we consider an asymmetric ratchet po-
tential describing �ux vortices of the functional form

U(ϕ) = A− cos(ϕ)−
(µ
2

)
cos(2ϕ+ θ), (9)

where θ is a �xed phase, µ � a symmetry coe�cient
and A is a constant referencing the potential with re-
spect to the origin. Keeping Γ 2 as before, and taking the
same values of the boundary conditions employed above,
Eq. (7) has been solved, as A = 0, θ = π/15 and µ = 4/3
were considered in the potential (9) during numerical cal-
culation. The generated soliton waves are shown in Fig. 4
for di�erent values of α: 0.01, 0.1, 0.25, 0.5.

Fig. 4. Soliton evolution in an asymmetric poten-
tial (ratchet) for di�erent dispersion values: α =
0.01, 0.1, 0.25, 0.5 corresponding to (a), (b), (c), and (d),
respectively.

3.3. Fluxon dynamics in a double-well potential

In order to study the soliton dynamics and e�ect of po-
tential, we choose the latter as a double-well type having
the functional form as follows:

U(ϕ) = −1

2
ϕ2 +

1

4
ϕ4. (10)

The perturbed ϕ4-�eld Eq. (7) has been solved for the
same boundary conditions, taking the previous values
of α and preserving Γ 2 as before. Figure 5 illustrates
the evolution of solitons with progressive increase in the
dispersion constant.

3.4. Discussion

Figures 3, 4, and 5 demonstrate multiple types of soli-
ton dynamics expressing the Josephson phase of a 1D-
-extended junction. This phase alters in response to the

Fig. 5. Soliton evolution in a double-well potential for
di�erent dispersion values: α = 0.01, 0.1, 0.25, 0.5 corre-
sponding to (a), (b), (c), and (d), respectively.

�uxons' tunnelling motion and in accordance with the po-
tential controlling the energy state of �ux vortices, when
dissipation or damping exists in the system as α > 0,
without any forcing applied. In the case of a symmet-
ric potential considered in Sect. 3.1, we can see that for
the �rst time instances a localised kink forms and begins
to stretch out progressively with the increase of α, and
this kink gets stronger with further increase of the dis-
persion constant, at α = 0.5 one observes �attening of
the wave before its amplitude rises again. At this value
the wave gets stronger in magnitude than before, as dis-
sipation is compensated by strong nonlinearity and the
system is thereof balanced at such relatively high value
of α. This conservation of energy can be illustrated via
recalling McLoughlin�Scott perturbation theory [20], as
the left-hand side of Eq. (7) can be expressed by the
Hamiltonian H:

H =

∫ +∞

−∞

[
ϕ2
t

2
+
ϕ2
x

2
+ (1− cosϕ)

]
dx. (11)

The �rst term in H represents the kinetic energy,
whilst the second and third ones express the potential
energy of the system. Thus the variation in energy with
time can be calculated, and one may �nd from (11), tak-
ing Γ 2 = 1 here for simplicity, that

dH

dt
= (ϕxϕt)

+∞
−∞

+

∫ +∞

−∞
(ϕtϕtt − ϕxxϕt + ϕt sinϕ)dx. (12)

The �rst term approaches zero due to localization of
wave, consequently Eq. (12) becomes

dH

dt
=

∫ +∞

−∞
−ϕt(ϕxx − ϕtt − sinϕ)dx
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=

∫ +∞

−∞

(
Iϕt − αϕ2

t

)
dx = 0, (13)

where the quantities between brackets have been replaced
by dissipation terms which represent the right-hand side
of the SG equation. Thus the system preserves energy,
and the soliton propagates without dispersal.
Adopting analogous approach it can be shown that the

same situation holds in the case of ratchet and double-
-well potentials, despite the increase in dissipation within
the system, as seen in Figs. 4 and 5. One can ob-
serve the development of a kink soliton for the asym-
metric potential associated with �attening in the wave,
rapidly changing to anti-kink as the damping parameter
reaches 0.25 and then a kink is recovered again at 0.5.
A ratchet potential plays dynamically a signi�cant role,
due to inherent asymmetry of its structure so as to gener-
ate a unidirectional motion within the system, when non-
-equilibrium �uctuations prevail [21, 22]. Su�cient input
energy could then be available to overcome forces that
would cause dispersion of the soliton motion, particularly
when the junction is subjected to time-varying forces en-
abling movement of the soliton in one direction [23].

Fig. 6. Unidirectional motion of �uxon soliton in a
ratchet potential under bi-harmonic current for α̃ = 0.5;
current parameters are a1 = a2 = 0.5, ω = 0.6180 and
Γ 2 = 0.055.

If we consider the junction as an e�ective particle mov-
ing in a periodic potential of spatially-broken symmetry
such as a ratchet, under the in�uence of a bi-harmonic
driving current I(t) = a1 cos(ωt) + a2 cos(2ωt), that is
small and does not change the shape of the soliton whose
parameters only vary in time, one can obtain a unidirec-
tional soliton evolution as in Fig. 6. In this case one may
perform a canonical conversion on Eq. (7) so that it be
dependent on one variable ξ, i.e. by taking the transfor-
mation x = ξ + vt, here v is the velocity of the soliton.
Invoking the chain rules

∂/∂x = (∂/∂x)× (∂x/∂ξ) = ∂/dξ,

∂/∂t = (∂ξ/∂t)× (∂/∂ξ) = −v∂/dξ,

one �nds that ϕxx = ϕξξ and ϕtt = v2ϕξξ. Substituting
the latter second-order derivatives into Eq. (7) and col-

lecting the terms ϕξξ, the following equations ensues:(
1− v2

)
ϕξξ + αvϕξ + Γ 2 dU(ξ)

dξ
= a1 cos(ωξ) + a2 cos(2ωξ). (14)

Assuming for numerical simplicity (1− v2) = η, αb = α̃,
Eq. (14) can be written in a �nal form

ηϕξξ + εϕξ + Γ 2 dU(ξ)

dξ
= a1 cos(ωξ) + a2 cos(2ωξ),

(15)

where U(ξ) is given by Eq. (9).

Setting η = 1 and the parameters of the bi-periodic
current are a1 = a2 = 0.5, ω = 0.6180, where α̃ = 0.5
(a critical value), keeping the potential parameters as be-
fore and Γ 2 = 0.055. It can be seen that the trajectory
of the soliton exhibits periodically localized waveform in
this case. In addition, chaos may develop for α̃ < 0.5
and for incommensurate frequencies; the behaviour of the
junction as a particle residing in a ratchet potential has
been the subject of intensive research, particularly for
transport issues [21�26]. It has been also shown that di-
rected energy �ow develops owing to progressive motion
of kink solitons being an energy carrier [18]. The latter
phenomenon is sustained via an inhomogeneous energy
exchange between the system and applied ac signal.

We can also observe that for a dwp the spatiotemporal
evolution of the soliton gets sharper as α increases. This
sort of behaviour is attributed to the nature of the po-
tential, which inherently possesses structural phase tran-
sition in the perturbed equation of the �eld ϕ4 �Eq. (7)�.
There is a possibility in this case for the �uxon to stabilize
and hence overcome the dissipation in the system paving
the way for the existence of localized soliton excitations
in the absence of external forces applied to the LLJ. The
two localization minima may also compete, and qualita-
tively the interplay between geometry and nonlinearity
provides rich phenomena.

Christiansen et al. studied the e�ect of curvature on
soliton dynamics of a chain of nonlinear oscillators [27]
and demonstrated that the interaction between curvature
and nonlinear oscillations leads to symmetry breaking of
the nonlinear excitations and their trapping (manifested
as dwp) by the bending. The energy of excitations de-
creased as the curvature of the chain increased causing
the presence of localized soliton excitations.

A symmetry breaking mechanism brings about a sym-
metric stationary state to become unstable and transform
into energetically favourable asymmetric state. To inves-
tigate the e�ect of an external quasiperiodic force on the
�uxon behaviour of the LLJ in dwp when α = 0.5, we
solved Eq. (7) in the presence of the I(t) = a1 cos(ω1t)+
a2 cos(ω2t) perturbation term, the soliton evolution is de-
picted in Fig. 7. The numerical values of the selected
parameters are a1 = a2 = 0.1, ω1 = ω2 = 0.02, and
Γ 2 = 0.055, and it can be seen that localization of the
soliton becomes favourably much stronger after driving
the system. Enhanced symmetry breaking may be re-
sponsible for this trend as consequence of the interaction
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Fig. 7. Enhanced localization of soliton in dwp sub-
jected to quasiperiodic perturbation for α = 0.5; param-
eters are a1 = a2 = 0.1, ω1 = ω2 = 0.02 and Γ 2 = 0.055.

between tunnelling �uxons and quasiperiodic �eld taking
into account the symmetry considerations of the poten-
tial. This issue needs further investigation, and will be
the focus of future papers.

4. Conclusion

Soliton evolution modes have been investigated in the
long Josephson junction, starting from the SG equation
in three types of potential: symmetrically sinusoidal,
asymmetric ratchet and double-well. For the purpose
of modelling, the inline geometry of the junction has
been considered for which the electric current is applied
across the plane of the superconducting structure, and
perpendicular to magnetic �ux vortices moving through
the insulating layer. The perturbed soliton equation has,
therefore, been identi�ed using the serially-connected
and inductively-coupled model of long Josephson junc-
tion. Numerical solutions of SG equation in the afore-
mentioned potentials have been found without initially
driving the system by external time-dependent force.
The �uxons evolution exhibited di�erent behaviour cor-
responding to each potential, however it developed robust
and localised waveform with further increase in disper-
sion constant. The latter trend was stronger in the case
of ratchet and double-well potential due to associated
spatial symmetry. We demonstrated that supplemental
stability to such solitons could also be achieved via apply-
ing a bi-harmonic and quasiperiodic current, which lead
energetically to boosting the balance between dissipation
and nonlinearity in favour of endorsing the localization
properties of the soliton, particularly at relatively high
value of the dispersion parameter α = 0.5.
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