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Vibrational Spectroscopy of H2O by Lie Algebraic Methods
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An algebraic model of coupled anharmonic oscillators is introduced, capable of describing the stretching
vibrations of medium-size molecules. This model is applied to the calculation of O�H vibrational modes of water
molecules. In this paper, we have reported the stretching and bending vibrational energy levels of water molecule
using the algebraic and density functional theory method. The results obtained by theoretical models show good
agreement with the experimental values.
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1. Introduction

A new theoretical concept � vibron model (based on
the Lie algebra) to study molecular spectra was built
in the last part of the 20th century [1, 2]. This new
model seems to o�er a concrete and complementary tech-
nique to the traditional approaches used in molecular
spectroscopy. The algebraic model (vibron model) orig-
inally developed for diatomic and tri-atomic molecules
[3, 4]. U(4) and U(2) algebraic models have been used
so far in the analysis of experimental data. The U(4)
model deals with the rotation and the vibration simulta-
neously, but it becomes quite complicated when the num-
ber of atoms in a molecule are more than four. The U(2)
model was particularly successful in explaining stretch-
ing vibrations of linear and bent X2Y molecules [5�7].
Later, it extended to linear and quasi-linear tetra atomic
molecules [8�10] and could prove itself to be a compet-
itive one to the traditional analysis. The main features
and basic applications of these methods have been de-
scribed by Iachello and Levine [11] and Oss. The Lie al-
gebraic approach was found to be successful in our study
of the vibrational spectra of H2O and CF4 [12], HCN [13],
HCCF, HCCD [14], tetrahedral [15], nickel metallopor-
phrins [16], copper tetramesityl porphyrin [17]. Highly
accurate prediction of molecular vibrations has been a
challenging task since ever in theoretical and physical
chemistry. Quantum chemistry allows currently, valuable
estimations of vibrational energy levels, one of the best
and recent advanced is density functional theory (DFT)
method [18].
In this paper, we use the U(2) algebraic model to cal-

culate the normal fundamental and overtone modes of
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vibrations of water molecule and hence �nd the accuracy
of the results with respect to the experimental observa-
tions.

2. Algebraic framework

The algebraic model is based on the isomorphism of the
U(2) Lie algebra and one-dimensional Morse oscillator
whose eigenstates may be associated with U(2) ⊃ O(2)
states. For a tri-atomic molecule like A2B, we introduce
two U(2) Lie algebra to describe two stretching bonds
(A�B) respectively. Two possible chains of molecular dy-
namical groups in tri-atomic molecules are described by

U1(2)⊗U2(2) ⊃ O1(2)⊗O2(2) ⊃ O12(2) (1)

q.n. : N1 N2 n m n+m

U1(2)⊗U2(2) ⊃ U12(2)(2) ⊃ O12 (2)

q.n. : N1 N2 ν1 + ν2
where Eqs. (1) and (2) correspond to local and nor-
mal coupling, respectively. The quantum numbers cor-
responding to various algebras are indicated by n, m in
Eq. (1) and ν1, ν2 in Eq. (2). N1 and N2 are vibron
numbers corresponding to the number of bound states of
two oscillators and are constant for the system. It is to
be noted here that n+m = ν1 + ν2 is a conserved quan-
tity. The bending motion can now be assigned an algebra
U3(2) to be combined with the algebra U1(2)⊗U2(2) as-
sociate with the interacting stretching motions.
The common algebraic model Hamiltonian in the case

of stretching and bending mode for molecule we consider
thus has the form [11]:

H = E0 +

n∑
i=1

AiCi +

n∑
i<j

AijCij +

n∑
i<j

λijMij . (3)

In this expression, one �nds three di�erent classes of ef-
fective contributions. The �rst one,

∑n
i=1AiCi is de-

voted to the description of n independent, anharmonic

(3)
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sequences of vibrational levels (associated wih n indepen-
dent, local oscillators) in terms of the operators Ci. The
second one,

∑n
i<j AijCij leads to cross-anharmonicities

between pairs of distinct local oscillators in terms of the
operators Cij . The third one,

∑n
i<j λijMij describes an-

harmonic, non-diagonal interactions involving pairs of lo-
cal oscillators in terms of the operators Mij . In Eq. (3),
Ci is an invariant operator with eigenvalues 4(ν2i −Niνi)
and matrix elements with the Casimir and Majorana op-
erators are as follows:

〈Ni, νi;Nj , νj |Cij |Ni, νi;Nj , νj〉
= 4
[
(νi + νj)

2 − (νi + νj)(Ni +Nj)
]
, (4)

〈Ni, νi;Nj , νj |Mij |Ni, νi;Nj , νj〉
= Niνj +Njνi − 2νiνj , (5)

〈Ni, νi + 1;Nj , νj − 1|Mij |Ni, νi;Nj , νj〉
= −

[
νj(νi + 1)(Ni − νi)(Nj − νj + 1)

]1/2
, (6)

〈Ni, νi − 1;Nj , νj + 1|Mij |Ni, νi;Nj , νj〉
= −

[
νi(νj + 1)(Nj − νj)(Ni − νi + 1)

]1/2
. (7)

3. Results and discussion

A comparison of the experimental and calculated fre-
quencies of stretching and bending vibrations of water
molecule using the algebraic model is shown in Table I.
Using established norms [10, 15], the vibron number N
and other algebraic parameters A, A, k, k0 are shown in
Table II for water molecule.
The optimized con�guration of water is shown

in Fig. 1.

TABLE I
Vibrational energy levels (in cm−1) of H2O.

(ν1 ν2 ν3) Observed (I)
Calculated Deviation

Algebraic method DFT method ∆ δ

(1 0 0) 3657.05 3657.80 3737.96 −0.75 −80.91
(0 0 1) 3755.93 3747.56 3869.96 8.37 −114.03
(2 0 0) 7201.54 7155.08 � 23.23 32.85218

(1 0 1) 7249.82 7244.48 � 2.67 3.77595

(0 0 2) 7445.05 7484.04 � 19.495 27.57009

(3 0 0) 10599.66 10580.76 � 9.45 13.36432

(2 0 1) 10613.41 10668.24 � 27.415 38.77066

(1 0 2) 10868.86 10794.43 � 37.215 52.62996

(0 0 3) 11032.40 11057.60 � 12.6 17.81909

(2 0 2) 13828.30 13665.93 � 81.185 114.81293

(3 0 1) 13830.92 13843.40 � 6.24 8.82469

(4 0 0) 14221.14 14211.45 � 4.845 6.85186

(1 0 3) 14318.80 14468.23 � 74.715 105.66297

(0 0 4) 14536.87 14536.44 � 0.215 0.30406

(3 0 2) 16898.40 16895.67 � � �

(4 0 1) 16898.83 16899.78 � � �

(5 0 0) 17458.20 17455.88 � � �

(2 0 3) 17495.52 17498.56 � � �

(1 0 4) 17748.07 17750.55 � � �

(0 0 5) 17970.90 17970.54 � � �

(4 0 2) � 19880.40 � � �

(5 0 1) � 19962 � � �

(6 0 0) � 20292.79 � � �

(3 0 3) � 20555.96 � � �

(2 0 4) � 20833.07 � � �

(1 0 5) � 21077.64 � � �

(0 0 6) � 21256.28 � � �

3.1. Experimental data

Reference [5] provides the necessary experimental data
for this study.

3.2. Vibron number

In algebraic theory, we introduce the vibron number
N which is directly related to the anharmonicity of the

local O�H stretching bonds. The value of vibron num-
ber Ni (for stretching bond) for H2O molecule can be
determined by the relation [11]:

Ni =
ωe

ωexe
− 1, (8)

where ωe and ωexe are the spectroscopic constants of
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TABLE II

Algebraic parameters for H2O. All parameters are
in cm−1 except N , which is dimensionless.

Stretching parameters Bending parameters

N1 = N2 = N = 44 N3 = 28

A1 = A2 = A = −18.98 A3 = −14.76

A12 = −1.13 A13 = A23 = −3.62

λ12 = 1.04 λ13 = λ23 = 1.72

Fig. 1. Optimized structure of H2O molecule.

stretching interactions of diatomic molecules considered.
From Fig. 1, it can be noticed that some of the bonds
are equivalent. It may be noted that during the calcula-
tion of the vibrational frequencies of water molecule, the
value of N is kept �xed and not used as a free parameter.
This numerical value must be seen as initial guess; de-

pending on the speci�c molecular structure, one can ex-
pect changes in such an estimate, which, however, should
not be larger than ±20% of the original value.

3.3. Values of the �tting parameters
The �tting parameters A,A′, λ,N which are used

in this study for the vibrational frequencies of water
molecule for 44 stretching vibrational bands are given
in the following Table II.
For a tri-atomic molecule H2O, we number the bonds

from 1 to 3. It is seen that two stretching bond A�B
from 1 to 2 are equivalent. Thus we choose the pa-
rameters for stretching bond as Ni = N1 = N2 = N ,
Ai = A1 (for i = 1 to 2), Aij = A12 and λij = λ12
(for i, j = 1, 2). The parameters λij describe the in-
teractions between stretching bonds and the interaction
between bending bond, respectively. The �tting parame-
ters [12] used in the study of vibrational spectra of water
molecule are given in Table II.

Fig. 2. O�H band vibrational energy levels of water.

The highly excited vibrational levels, calculated by
using the algebraic Hamiltonian Eq. (3), are shown in
Fig. 2 (the calculated in detail vibrational energy lev-
els are listed in Table I). When the quantum number
ν increases in a �xed band, the numbers of energy lev-
els increase rapidly. Usually, the degeneracy or quanti-
-degeneracy of energy levels is called clustering. It may

be seen from Fig. 2 that the vibrational energy levels of
water molecule form make up clusters.

4. Conclusion
We have presented here a vibrational analysis of the

stretching modes of water molecule in terms of one-
-dimensional vibron model. The parameters of O�H
bonds have been determined by a �t to the known states
of H2O, while the interactions between di�erent modes
have been estimated. The calculation provides com-
plete analysis of some of the stretching modes of water
molecule (we have the calculation also for the remaining
modes). The importance of the method is that it allows
one to do a global analysis of all molecular species in
terms of few parameters. The present calculation demon-
strates that U(2) model can be applied successfully to the
higher excited states of water molecules. In turn it pro-
vides way to make assignments of unknown levels or to
check assignments of known levels.
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