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This paper deals with an active vibration protection (p-reduction) of the beam-actuators mechanical system,
hence it concerns separate modes. The paper's aim is an e�ectiveness analysis of the p-reduction assuming di�erent
number of actuators. It is assumed a priori that actuators are bonded to the beam in the sub-domain with the
largest curvatures and they are exactly the same. The beam clamped at one end is chosen as the research object.
Next, as required by the p-reduction condition, the number and distribution of actuators are changed. It turns
out that the best reduction e�ectiveness, measured via any e�ectiveness coe�cient, is obtained for one actuator
bonded in the sub-domain with the largest curvature. The validation of theoretical considerations is con�rmed
numerically.
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1. Introduction

The p-reduction is a particular case of active vibration
reduction (a-reduction) [1�3]. Both a- and p-reduction
are realized with actuators. Instead of the active vibra-
tion reduction, there is the passive one [4, 5]. The quan-
tity of the reduction depends on many factors. One of
them, and at the same time the more important, is ap-
propriate distribution of actuators on the structure [5�
7]. A question about an optimal distribution of actua-
tors is justi�ed. Up to now, a great number of papers
has been published on this subject and they pointed out
a lot of optimization techniques, e.g. [8]; a survey is
given in [9]. However, these techniques do not provide
explicit distribution of the actuators and consistently,
do not assure maximum e�ectiveness of the reduction.
However, this problem is solved in [1, 10�12]. It was
proved there, that the most e�ective actuators distri-
bution is on the structure sub-domains with the largest
curvatures; such distribution is called quasi-optimal one
(QO). In the quoted papers, the QO-distribution is de-
duced based on the heuristic reasons and it was con-
�rmed theoretically in [13]. So hereafter such distribu-
tion may be regarded as optimal one (O-distribution) and
it is proved that the maximum e�ectiveness of the p-
reduction of the beam separate modes may be achieved
for O-distribution. Sub-domains with such curvatures
are called as O-subdomains.
The beam clamped at end and free at the other one is

chosen as the research object. It is excited with evenly
spread and harmonic force. The force acts with �rst
three natural frequencies separately. The internal damp-
ing coe�cient of the material is introduced. All actuators
are identical from the geometrical and technical point of
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view, so they interact on the beam with the same forces.
The force values depend on the number and distribu-
tion of actuators on the beam. Applying the p-reduction
condition, force values are derived. Assuming that the
number of actuators is the same as the number of O-
subdomains, the values of forces are found theoretically
in [13]. It turned out that the values of forces were mini-
mal, so this means that the minimum energy is added to
the system and consequently, the maximum e�ectiveness
of the p-reduction is assured. An e�ectiveness measure
of the reduction is an e�ectiveness coe�cient de�ned in
[1, 2, 4, 7, 9�15].
Useful, from the point of view application to the active

reduction of general beam vibration, is an e�ectiveness
analysis of p-reduction for di�erent number of actuators
placed in O-subdomains. It is proved in [1] that even
one actuator bonded anywhere on the beam provides p-
reduction of separate modes but the e�ectiveness may be
poor.
The aim of the paper is an e�ectiveness analysis of p-

reduction for di�erent combinations of actuators distri-
bution in O-subdomains. It is possible for the second and
third mode, since they have more then one O-subdomain.
The �rst mode is taken into account for comparison. To
the author's knowledge, such problem has not been con-
sidered yet.

2. Forced vibration of the beam with damping

This theory is repeated after papers [13, 15, 16]. Let
the beam be clamped at one side, Fig. 1; and geometri-
cal data of the beam are: ` � length; S = bh � surface
of the rectangular cross-section; b � width; h � thickness;
qE = qE(x, t) � excited force. The beam vibration equa-
tion is given by

EJ
(
D4
xu+ µD4

x (Dtu)
)

+ ρSD2
t u = −qE , (1)

where u = u(x, t) is the beam de�ection at the point
x and the moment t, E � the Young moduli, J � sur-
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face moment of inertia of the beam cross-section, ρ �
mass density, µ � internal damping factor, D4

x(. . .) =
∂4(. . .)/∂x4, Dt(. . .) = ∂(. . .)/∂t.

Fig. 1. The geometry of the problem.

The boundary conditions are described by the follow-
ing equations:

u(x = 0, t) = 0, Dxu(x = 0, t) = 0, (2)

D2
xu(x = `, t) = 0, D3

xu(x = `, t) = 0. (3)

Besides, initial conditions are assumed to be equal to
zero. The solution of the formulated problem is forced
harmonic vibrations with damping. Let the lateral load
force

qE(x, t) = qE(x) exp(iωqt), (4)

where i2 = −1, and ωq is the angular frequency.
Applying the Fourier method, the solution of Eq. (1)

is assumed as

u(x, t) = X(x) exp(iωqt). (5)

After some calculation, the solution of the above problem
is

X(x) = Xq(x) =
∑
ν

CνXν(x) =
∑
ν

Xq;ν(x),

ν = 1, 2, . . . , n, (6)

where Cν are certain constants, Xq(x) � forced vibra-
tions, Xν(x) � ν-modes (eigenfunctions), and

Xν(x) = K2(λν`)K2(λνx)−K1(λν`)1K3(λνx), (7)

where the Krylov functions have the form

K1(z) = (ch(z) + cos(z)) /2,

K2(z) = (sh(z)− sin(z)) /2,

K3(z) = (ch(z)− cos(z)) /2,

K4(z) = (sh(z) + sin(z)) /2, (8)

{λν} � set of eigenvalues: {λν`} = {1.8751, 4.6941, . . . ,
(2ν − 1)π/2}.
The constants Cν are expressed by

Cν =
1

(1 + iµωf )ω2
ν − ω2

q

Dν =

1

α2
ν

Dν =
1

ρS

1

α2
ν

1

β2
ν

Iν;E = C∗νIν;E , (9)

C∗ν =
1

ρS

1

α2
ν

1

β2
ν

, Iν;E = −
∫ `

0

qEXν(x)dx,

ω2
ν =

EJ

ρS
λ4
ν , β2

ν =

∫ `

0

X2
ν (x)dx. (10)

Thus, the problem of the beam vibration with damping,
excited with the force qE(x, t), is solved. The �rst three
modes, Eq. (7), are depicted in Fig. 2. Henceforth, the

spread load force with constant amplitude qE is consid-
ered, i.e. qE(x) = qE .

Fig. 2. Eigenfunctions (modes): 1 − X1, 2 − X2, 3
− X3.

3. Beam vibration reduction by actuators

It is well known from [13, 15, 17] and references cited
therein, that actuators-beam interact with moments of
the couples of forces approximately. Since the beam vi-
bration equation is the equation of forces, then to con-
sider the action of actuators on the beam, two moments
are replaced with two couples of forces, Fig. 3. Next,
the separate forces are taken into account in the Eq. (1).
Hence, the total load is the sum of the load forces ex-
pressed by Eq. (4) and the forces interacting between
actuators and the beam, and it is given by

f(x) = −qE +
(
faδ(x− x1a)− 2faδ(x− xa)

+faδ(x+ x2a)
)
, (11)

where x1a = xa − `a/2; x2a = xa + `a/2; xa is the loca-
tion of the actuator centre; expression in the bracket is
the sum of interacting forces actuators-beam; and δ(.) is
the Dirac delta function. In this case, instead of Iν;E in
Eq. (10), for f(x) given by Eq. (11) one has

Iν = −
∫ `

0

f(x)Xν(x)dx = −qE
∫ `

0

Xν(x)dx

+fa [Xν(x1a)− 2Xν(xa) +Xν(x2a)] =

−Iq;ν + Ia;ν . (12)

The expression in square bracket constitutes the second-
order central �nite di�erence. Since the distance between
nodes `a is constant, then the di�erence can be trans-
formed into

1

`2a
[Xν(x1a)− 2Xν(xa) +Xν(x2a)] = D2Xν(xa) =

κν(xa), (13)

where κν(xa) is the curvature of the mode Xν(x) at the
point x = xa [1, 2, 4]. Substituting Eq. (13) into Eq. (12)
one obtains

Iν = −qE
∫ `

0

Xν(x)dx+ fa`
2
aκν(xa) =

−Iq;ν + Ia;ν . (14)
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For several actuators, instead of Eq. (14),

Iν = −Iq;ν +
∑
a

fa`
2
aκν(xa) =

−Iq;ν +
∑
a

Ia;ν = −Iq;ν + IΣ ;ν , (15)

where a = 1, 2, . . . , na � number of actuators.

Fig. 3. The idea of interaction of the PZT-beam via
couples of forces.

Substituting Eq. (10) into Eq. (6) via Eq. (15), the
reduction vibration is obtained:

Xf (x) =
∑
ν

C∗νIνXν(x) =∑
ν

C∗ν (−Iq;ν + IΣ;ν)Xν(x) =
∑
ν

Af ;νXν(x), (16)

where, in explicit form,

Af ;ν = C∗ν (−Iq;ν + IΣ;ν) =

C∗ν

(
−Iq;ν +

∑
a

fa`
2
aκν(xa)

)
. (17)

As it was pointed out in [1, 13, 15], reduction of Af ;ν

leads to reduction of the curvature κf (x), the shear force
Q(x), and the bending momentM(x); hereafter all these
quantities are described jointly as

Ψ(x) =
∑
ν

Ψν(x) = C
∑
ν

Af ;νΦν(x), (18)

where

Ψ(x) = {u(x), Q(x),M(x)} ,

Φν(x) = {Xν(x), κν(x), Dκν(x), }

C = {1,±EJ,±EJ}. (19)

4. Reduction e�ectiveness coe�cients

Let the di�erence between any quantities of the beam
vibration [15]

∆Ψ(x) = Ψq(x)−ΨR(x) = ΨΣ (x), (20)

where Ψq(x), ΨR(x) are quantities calculated without
and with actuators, respectively. Hence

ΨR(x) =
∑
ν

Ψν(x) = C
∑
ν

AR;νΦν(x) =

Ψq(x)−ΨΣ (x), (21)

where

AR;ν = −Aq;ν +AΣ ;ν = C∗νIν =

C∗ν (−Iq;ν + IΣ ;ν) . (22)

It is stressed that the amplitude Aq;ν arises from qE act-

ing alone, whereas AΣ ;ν is a result of acting of actuators
only; this is exactly the amplitude called the reduction
amplitude.
The di�erence ∆Ψ(x) is interpreted as the quantity of

the vibration reduction and it is the �rst measure of this
reduction called the quantity reduction coe�cient. The
second measure of the vibration reduction is de�ned as

Rψ(x) =
∆Ψ(x)

Ψq(x)
=

Ψq(x)−ΨR(x)

Ψq(x)
. (23)

It is called the reduction coe�cient. The e�ectiveness of
the vibration reduction is de�ned as a quotient of some
vibration reduction measure by an amount of the energy
W provided to the system in order to excite actuators.
Hence, �rst measure of the vibration reduction may be
de�ned by the so-called e�ectiveness coe�cient

EΨ (x) = RΨ (x)/W. (24)

As mentioned above, the energy W provided to the
system is transformed into couples of forces. There-
fore, the energy W may be replaced by sum of forces
fΣ = 4

∑
a fa, hence

EΨ (x) = RΨ (x)/fΣ . (25)

Eqs. (20)�(25) de�ne the appropriate factors of the vi-
bration reduction at the point x. In many cases it is
convenient to calculate mean values of these coe�cients
at the whole beam domain or at the beam sub-domains.
For this purpose, the mean reduction coe�cients are de-
�ned; more details are given in references cited above.
Other measures are presented in [14, 18, 19].

5. The p-reduction condition

The condition of the p-reduction may be expressed
in di�erent form, namely: AΣ ;ν = Aq;ν , ΨR(x) = 0,
∆Ψ(x) = Ψq(x), or RΨ (x) = 1. It leads to the maximum
of e�ectiveness coe�cient, i.e. EΨ (x) = 1/fΣ = max.
The last condition is met, if the sum of forces fΣ attains
its minimum. Under circumstances given above, it comes
down to the determination of na and xa. The problem
of the distribution of actuators, i.e. {xa}, is solved, even
analytically, in [13]. It is pointed out there, that the set
{xa} constitutes both points {x′a} in which the curvature
κν(x) achieves its extreme and the points {xmax, xmin}
in which κν(x) attains the biggest and the lowest values.
But the in�uence of the number of actuators distributed
in O-subdomains on the e�ectiveness of the p-reduction
is not solved so far. This problem is solved below in
numerical way.

6. Numerical calculations

The aim of numerical tests is an analysis of the p-
reduction via the e�ectiveness coe�cient EΨ (x). The
di�erent number of actuators is assumed. Since the ac-
tuators must be bonded only in O-subdomains, then the
goal concerns only the second mode and the third one.
In numerical calculations the following data are as-

sumed: ` = 0.5 m, b = 0.04 m, h = 0.005 m, J =
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(bh3)/12 m4, E = 69 · 109 Pa, µ = 3.35 · 10−4 s,
ρb = 2.7 · 103 kg/m3, qE = 0.02 N/m. The size of all
actuators is the same, i.e. `0 = `1 = `2 = `3 = 0.08`.
Furthermore, all actuators are excited by the same sig-
nal, hence {fa} = {f0}. The �rst actuators have to be
moved away from clamped side within necessary distance
`0/2.
First of all, the curvatures of separate modes are cal-

culated. The �rst mode is considered for comparison;
the curvature κ1(x) is depicted in Fig. 4. This mode has
only one O-subdomain outlined by {xa} = x1 = `0/2.
The value of the force, calculated based on Eq.(22), is
f0 = 0.7365. The e�ectiveness coe�cient, Eq. (25), is
EΨ = 1/fΣ = 1/(4 · f0) = 0.339.

Fig. 4. Curvature κ1(x).

Fig. 5. (a) � curvature κ2(x), (b), (c) � distribution of
separate actuators.

At the second mode case, there are two O-subdomains
{xa} = {x1, x2} = {`0/2, 0.235}, see the curvature κ2(x)
in Fig. 5(a). First, at these O-subdomains two actua-
tors are placed. So they act on the beam by the same
forces f0 = 0.041 and the e�ectiveness coe�cient is
EΨ = 1/fΣ = 1/(2 · 4 · f0) = 3.048. But it is proved
in [1] that p-reduction may be achieved by only one ac-
tuator. Having this conclusion in mind, �rst one ac-
tuator is placed in O-subdomain {xa} = x1 = `0/2,

Fig. 6. (a) � curvature κ3(x), (b), (c), (d) � combina-
tions of actuators pairs.

Fig. 5(b), and f0 = 0.0761 and EΨ = 3.285 are obtained.
Next, the actuator is placed in the second O-subdomain
{xa} = x2 = 0.235, Fig. 5(c), and in this case f0 = 0.0887
and EΨ = 2.8185.
At the third mode case, the procedure is quite the

same as that given above; the curvature κ3(x) is given
in Fig. 6(a). First of all, there are three O-subdomains
{xa} = {x1, x2, x3} = {`0/2, 0.1456, 0.3462}. In this
case, all (three) actuators, each combination of two ac-
tuators, and separate one are taken into account. These
combinations are described by {x1, x2},{x1, x3}, {x2, x3}
and they are presented in Fig. 6(b)�(d). The separate ac-
tuators are distributed the same way as for the second
mode.
All quantitative results are collected in Table.

TABLE
E�ectiveness of p-reduction for di�erent number of
actuators.

ν {xa} f0 κν(xa) EΨ

1 `0/2 0.7365 109.99 0.339

{`0/2, 0.235} 0.041 {7.648,−6.560} × 103
3.048

2 `0/2 0.0761 7.648× 103
3.285

0.235 0.0887 −6.560× 103
2.835

{`0/2, 0.1456, 0.3462} 0.0062 {4.3706,−4.1545, 4.7901} × 105
13.4409

{`0/2, 0.1456} 0.0096 {4.3706,−4.1545} × 105
13.0208

{`0/2, 0.3462} 0.0090 {4.3706, 4.7901} × 105
13.8889

3 {0.1456, 0.3462} 0.0092 {−4.1545, 4.7901} × 105
13.5870

`0/2 0.0188 4.3706× 105
13.2979

0.1456 0.0198 −4.1545× 105
12.6263

0.3462 0.0171 4.7901× 105
14.6199
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7. Conclusions

The conclusions enumerated below are derived assum-
ing that all actuators are the same and they are bonded at
the O-subdomains. The conclusions are concern of sepa-
rate modes of the beam vibration. Based on theoretical
and numerical considerations, the following conclusions
may be formulated:
1. If the domain has more than one O-subdomain, one

actuator placed in O-subdomain with the maximal cur-
vature assures maximum e�ectiveness of the p-reduction.
2. For many O-subdomains, the best e�ectiveness of

the p-reduction is obtained if consecutive actuators are
placed in O-subdomains with curvature decreasing one
after the other.
Despite of conclusions are drawn for separate modes

only and the p-reduction, it seems that they are correct
for general vibrations of the beam and the a-reduction.
The studies on these problems are carried on.
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