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A rigorous solution is presented for the problem of sound radiation by an oscillating and wobbling annular
piston embedded concentrically in a perpendicular �at screen surrounding a semi-in�nite circular cylindrical ba�e.
Two forms of the Green's function of the considered region are used. The acoustic impedance is presented in its
integral form useful for numerical calculations which enable studying the e�ect of the acoustic waves scattering on
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1. Introduction

From the practical point of view, phenomena related
to sound radiation generated by vibrating pistons, mem-
branes, and plates, both circular and elliptical, embed-
ded in a �at acoustically rigid screen is still interest-
ing. A number of studies deals with such problems.
Wyrzykowska investigated sound radiation by oscillating
pistons, circular, annular and rectangular, in the range of
low frequencies [1]. Pritchard analyzed the acoustic mu-
tual impedance between oscillating pistons arranged as
a hexagonal system of sources [2]. Porter investigated the
self- and mutual impedance of circular radiators of the
uniform vibration velocity distribution [3]. Thompson Jr.
calculated the self and mutual impedance of oscillating
annular and elliptical pistons [4]. Stepanishen presented
the impulse response and the acoustic impedance of the
annular piston [5]. Mellow and Kärkkäinen calculated the
acoustic impedance of a vibrating disk in a circular baf-
�e of �nite dimensions [6]. Mellow presented the acoustic
impedance of a vibrating resilient disk in the range of low
frequencies [7]. A number of further studies concern the
use of a variety of theoretical and experimental methods
for determining the acoustic impedance of circular and
rectangular plates and membranes [8�15].
For practical reasons, the solutions to asymmetric

problems are particularly important. Mangulis [16] was
the �rst who published results of the acoustic impedance
of oscillating and wobbling circular piston embedded in
a �at rigid screen.
Rdzanek et al. presented the Green's function of the

region located above a �at screen around a circular cylin-
drical ba�e [17]. On the basis of results presented in this
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study, Rdzanek, Rdzanek, and Pieczonka proposed the
integral formulations of acoustic impedance of an oscil-
lating annular piston embedded in a �at screen around a
semi in�nite circular cylindrical ba�e [8].
The study of Mangulis [16] was the only one of the

studies mentioned above that concerned the sound radi-
ation of a circular piston wobbling in a �at screen. To the
best of the authors' knowledge, the acoustic impedance
of a wobbling annular piston embedded in a �at screen
concentrically around a circular cylindrical ba�e has not
been presented so far. The rigorous solution to this prob-
lem is proposed in this study.

2. Theoretical analysis

An asymmetric steady-state vibration velocity distri-
bution was assumed on the surface of an annular piston.
The velocity component v|z0=0 ≡ n · v|z0=0 normal to
the surface of the �at screen was adopted as follows:

v(r0, ϕ0, t) =

[
v0 + v1

r0
a1

cos(β − ϕ0)

]
e− iωt, (1)

where r0, ϕ0 are the polar coordinates of the piston's
point, β = const is the rotation angle of the normal to
the nodal diameter of the piston's wobbling, v0 = |v0| is
the velocity amplitude of the piston's transverse oscilla-
tions (the zero initial phase assumed), v1 = |v1|e iα is the
velocity amplitude of wobbling of the point located at the
piston's inner edge of coordinates r0 = a1 and ϕ0 = β,
α is the initial phase di�erence between the transverse
oscillation velocity and the wobbling velocity, ω = kc is
the vibrations' pulsation, k is the wavenumber, c is the
speed of sound in air, i2 = −1.
Equation (1) indicates that the piston vibrations are

composed of transverse oscillations (Fig. 1a) and wob-
bling (Fig. 1b) with the initial phase di�erence equal to
α. The velocity amplitude of wobbling at the point at
the outer piston's edge, with coordinates r0 = a2 and
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ϕ0 = β, equals obviously to v1a2/a1. The nodal line
of the piston's wobbling presented is in the top view in
Fig. 2. Mangulis, in his study [16], assumed a similar
vibration velocity for a circular piston with a di�erence
consisting in that he assumed β = 0 and vw being the
velocity amplitude of wobbling of the point located at
the outer edge of a circular piston.

Fig. 1. The rigid body modes of an annular piston lo-
cated on a �at screen around a circular cylindrical baf-
�e of radius a: (a) oscillating, (b) wobbling. Solid line
� piston's equilibrium position; dashed line � piston's
maximum de�ection.

Fig. 2. The con�guration of an annular piston (the ra-
dius of inner edge a1 and the radius of outer edge a2)
located on a �at screen around a semi in�nite circular
cylindrical ba�e (the radius a). Solid line � the nodal
line of the wobbling piston; dashed line � the normal to
the nodal line.

The Green function presented in [17] was used to solve
the wave equation and calculate the acoustic pressure am-
plitude. It was assumed that the resultant vibration ve-
locity of the piston is small (|v0|, |v1| � c). The Green's
function G(r|r0) satis�es the Neumann's boundary con-
ditions at both ba�es (the �at screen and the semi in�-
nite circular cylindrical ba�e),

∂G(r, ϕ, z|r0, ϕ0, z0)

∂r

∣∣∣∣
r=a

= 0,

∂G(r, ϕ, z|r0, ϕ0, z0)

∂z

∣∣∣∣
z=0

= 0,

where (r0, ϕ0, z0) are the source's point cylindrical coor-
dinates, and (r, ϕ, z) are the observation point cylindrical
coordinates. The tightened Sommerfeld's radiation con-

ditions (cf. [18, 19]) are also satis�ed at an in�nitely large

distance from the source (0 < a < a1 < a2 �
√
r2 + z2).

The Green's function assumes the form of

G(r, ϕ, z|r0, ϕ0, z0)

=

∞∑
m=0

εm cosm(ϕ− ϕ0)Gm(r, z|r0, z0), (2)

where

εm =

{
1; m = 0,

2; m = 1, 2, 3, . . . ,
, (3a)

Gm(r, z|r0, z0) =
ik

2π

∞∫
−
0

Fm(r|r0) cos(kzu)

× cos(kz0u)du, (3b)

Fm(r|r0) =
H

(1)
m (kr0

√
1− u2)

H
(1)′
m (ka

√
1− u2)

×
[
Jm(kr

√
1− u2)H(1)′

m (ka
√

1− u2)

−H(1)
m (kr

√
1− u2)J ′m(ka

√
1− u2)

]
,

a 6 r 6 r0 <∞, (3c)

Fm(r|r0) =
H

(1)
m (kr

√
1− u2)

H
(1)′
m (ka

√
1− u2)

×
[
Jm(kr0

√
1− u2)H(1)′

m (ka
√

1− u2)

×−H(1)
m (kr0

√
1− u2)J ′m(ka

√
1− u2)

]
,

a 6 r0 6 r <∞. (3d)

k is the wavenumber,
∫
− is the Cauchy's principal value,

the prime sign denotes the di�erentiation according to
the entire argument, and the integration path in Eq. (3b)
is presented in Fig. 3. The two denotations of functions
F in Eqs. (3c) and (3d) indicate that the Green's function
assumes the two di�erent forms depending on whether r
is larger or smaller than r0. Both forms are necessary
since they will be used later during the integration.

Fig. 3. The integration path in the plane of complex
variable u = u′ + iu′′.

The vibration velocity in Eq. (1) and the Green's func-
tion in Eq. (2) together with the denotations in Eq. (3)
were inserted to the acoustic potential equation
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φ(r) =

∫
S0

v(r0, ϕ0, z0)G(r, ϕ, z|r0, ϕ0, z0)
∣∣
z0=0

dS0,

(4)

where S0 = πa21 (s2 − 1) is the area of the vibrating an-
nular piston for z0 = 0 and s = a2/a1 is the geometric
parameter of the piston. Further, the integration over
the interval (0, 2π) of the angular variable ϕ0 yields

φ(r) = 2πv0a1
∑
m

εmδ0m cosmϕ

× 1

a1

∫ a2

a1

Gm(r, z|r0, 0) r0dr0 + πv1a1

×
∑
m

εmδ1m cos(β −mϕ)

× 1

a21

∫ a2

a1

Gm(r, z|r0, 0) r20 dr0. (5)

The orthogonality of trigonometric functions was used
during integration leading to the summation with the
Kronecker delta which enables formulating the acoustic
potential as follows

φ(r) = v0a1I0(r, z) + v1a1I1(r, z) cos(β − ϕ), (6)

where

I0(r, z) =
2π

a1

∫ a2

a1

G0(r, z|r0, 0) r0dr0

= − ik

a1

∞∫
−
0

H
(1)
0 (kr

√
1− u2)

H
(1)′
0 (ka

√
1− u2)

[
J ′0(ka

√
1− u2)

×
∫ r

a1

H
(1)
0 (kr0

√
1− u2) r0dr0 −H(1)′

0 (ka
√

1− u2)

×
∫ r

a1

J0(kr0
√

1− u2) r0dr0

]
cos(kzu)du

− ik

a1

∞∫
−
0

1

H
(1)′
0 (ka

√
1− u2)

∫ a2

r

H
(1)
0 (kr0

√
1− u2) r0dr0

×
[
J ′0(ka

√
1− u2)H

(1)
0 (kr

√
1− u2)

−H(1)′
0 (ka

√
1− u2) J0(kr

√
1− u2)

]
cos(kzu)du,

(7a)

I1(r, z) =
2π

a21

∫ a2

a1

G1(r, z|r0, 0) r20 dr0

= − ik

a21

∞∫
−
0

H
(1)
1 (kr

√
1− u2)

H
(1)′
1 (ka

√
1− u2)

[
J ′1(ka

√
1− u2)

×
∫ r

a1

H
(1)
1 (kr0

√
1− u2) r20 dr0 −H(1)′

1 (ka
√

1− u2)

×
∫ r

a1

J1(kr0
√

1− u2) r20 dr0

]
cos(kzu)du

− ik

a21

∞∫
−
0

1

H
(1)′
1 (ka

√
1− u2)

∫ a2

r

H
(1)
1 (kr0

√
1− u2) r20 dr0

×
[
J ′1(ka

√
1− u2)H

(1)
1 (kr

√
1− u2)

−H(1)′
1 (ka

√
1− u2) J1(kr

√
1− u2)

]
cos(kzu)du.

(7b)

It is worth noticing that the integration over the inter-
val (a1, a2) of the radial variable r0 of the source's point
in Eqs. (7) was divided to two integrals calculated sepa-
rately, one over the interval (a1, r) (where Eq. (3d) was
used) and the another over the interval (r, a2) (where
Eq. (3c) was used). Therefore, both forms of the Green's
function (presented in [17]) were used for the considered
problem. This approach enables solving the problem and
�nding the acoustic potential. For this purpose, the fol-
lowing Wronskian was used [20, 21]

H
(1)
1 (z) J0(z)−H(1)

0 (z) J1(z) = − 2i

πz
, (8)

the following integrals∫ r

C0(kr) rdr =
r

k
C1(kr), (9a)∫ r

C1(kr) r2dr =
r2

k
C2(kr), (9a)

where Cν is a cylindrical function for ν = 0, 1, 2, and the
Hilbert transform of the cosine function [22]

2

π

∞∫
−
0

cos(kzu)du

1− u2
= sin(kz) (9c)

valid for 0 < k. This enables formulating the integrals in
Eqs. (7) in the form of the following single integrals:

I0(r, z) = − sin(kz)

ka1

+i

∞∫
−
0

{
sH

(1)
1 (ka2

√
1− u2) J0(kr

√
1− u2)

−J1(ka1
√

1− u2)H
(1)
0 (kr

√
1− u2)

− J ′0(ka
√

1− u2)

H
(1)′
0 (ka

√
1− u2)

[
sH

(1)
1 (ka2

√
1− u2)

−H(1)
1 (ka1

√
1− u2)

]
H

(1)
0 (kr

√
1− u2)

}
×cos(kzu)du√

1− u2
, (10a)
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I1(r, z) = − r

a1

sin kz

ka1

+i

∞∫
−
0

{
s2H

(1)
2 (ka2

√
1− u2) J1(kr

√
1− u2)

−J2(ka1
√

1− u2)H
(1)
1 (kr

√
1− u2)

− J ′1(ka
√

1− u2)

H
(1)′
1 (ka

√
1− u2)

[
s2H

(1)
2 (ka2

√
1− u2)

−H(1)
2 (ka1

√
1− u2)

]
H

(1)
1 (kr

√
1− u2)

}
×cos(kzu)du√

1− u2
. (10b)

It is worth noticing that in the above integrals

lim
z→0

J ′0(z)

H
(1)′
0 (z)

= 0, lim
z→0

J ′1(z)

H
(1)′
1 (z)

= 0, (11)

where it was assumed that z = ka
√

1− u2. This means
that the terms containing such quotients represent the
correction for the semi-in�nite circular cylindrical ba�e
for 0 < a < a1, whereas when there is no such ba�e,
their limits are equal to zero when a→ 0.

The knowledge of the acoustic potential enables ex-
pressing the acoustic pressure amplitude, for the time
harmonic steady state vibrations, in the form

p = %0
∂φ

∂t
= − ik%0cφ (12)

in the cylindrical coordinates, where p ≡ p(r, ϕ, z, t) =
p(r, ϕ, z)e− iωt and φ ≡ φ(r, ϕ, z, t) = φ(r, ϕ, z)e− iωt.
The acoustic potential in Eq. (6) was inserted to Eq. (12),
and the integrals in Eqs. (10) used giving the acoustic
pressure amplitude useful for some further calculations of
the acoustic power in the impedance approach. The re-
sultant acoustic pressure above the piston (a1 6 r 6 a2,
0 6 z <∞)

p(r, ϕ, z) = − ika1%0c[v0I0(r, z)

+v1I1(r, z) cos(β − ϕ)] (13)

is the superposition of the two components. The �rst of
them does not depend on the angular variable ϕ and is
associated only with the axisymmetric transverse oscilla-
tions of the piston (it contains the integral I0 and cylin-
drical functions of the orders zero and one). The second
depends on the angular variable ϕ and is associated with
the asymmetric wobbling of the piston (it contains the
integral I1 and the cylindrical functions of the one order
higher than those of the axisymmetric component).

The time-averaged acoustic power

Π =
1

2

∫
S

p
∣∣∣
z=0

v∗dS

=
1

2

∫ a2

a1

∫ 2π

0

p(r, ϕ, 0) v∗(r, ϕ)dϕ rdr (14)

was calculated in the impedance approach where S ≡ S0

is the area of the piston. After integrating over the an-
gular variable ϕ it was obtained that

Π = %0c πa
2
1

(
Ī0|v0|2 +

1

2
Ī1|v1|2

)
, (15)

where

Īn = − ik

an+1
1

∫ a2

a1

In(r, 0) rn+1dr (16)

for n = 0, 1. The expression in Eq. (15) together with
the integrals in Eqs. (16) represents the time averaged
acoustic power in its spectral form. It is worth noticing,
that this expression is the superposition of the acous-
tic power of the transversely oscillating piston (the term
containing the integral Ī0) and of the acoustic power of
the wobbling piston (the term containing the integral
Ī1), similarly as in the case of the acoustic pressure (cf.
Eq. (13)). The following facts are essential that there is
no mutual power between the two rigid body modes due

to
∫ 2π

0
cos(β − ϕ)dϕ = 0 for β = const, and that the

acoustic power does not depend on the value of the con-
stant β. For the same reason, the acoustic power does
not depend on the di�erence α of the initial phases of
oscillating and wobbling of the piston.

Further, the integration over the radial variable r was
performed giving

Īn =

∞∫
−
0

Fn(s, s1, ka1
√

1− u2)du

1− u2
(17a)

for n = 0, 1, where

Fn(s, s1, z) = sn+1H
(1)
n+1(sz)Ĵn+1(s, z)− Ĥ(1)

n+1(s, z)

×

[
Jn+1(z) +

J ′n(s1z)

H
(1)′
n (s1z)

Ĥ
(1)
n+1(s, z)

]
, (17b)

s = a2/a1 is the geometric parameter of the annular pis-
ton, s1 = a/a1 is the normalized radius of the circular
cylindrical ba�e, and the following denotation was intro-
duced:

Ĉn(s, z) = snC(sz)− Cn(z). (17c)

The quotient of cylindrical functions in Eq. (17b), such as
in Eq. (11), represents the in�uence of the circular cylin-
drical ba�e on the acoustic power similarly as in the
case of the acoustic pressure amplitude (cf. Eqs. (10)).
Further, the following reference acoustic power was for-
mulated:

Π(∞) =
1

2
%0c S〈|v|2〉, (18)

where

〈|v|2〉 =
1

S

∫
S

∣∣v(r, ϕ)
∣∣2dS = |v0|2

[
1 +

1

4
κ2(s2 + 1)

]
,

(19)

S = πa21(s2 − 1) is the piston's area, and κ = |v1|/|v0|
is the quotient of the velocity moduli of oscillations and
wobbling. The normalized acoustic impedance was for-
mulated as follows
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ζ =
Π

Π(∞)
= θ − iχ =

ζ0 + κ2

4 (s2 + 1)ζ1

1 + κ2

4 (s2 + 1)
, (20a)

where

ζ0 =
2Ī0
s2 − 1

, ζ1 =
4Ī1
s4 − 1

, (20b)

θ = <ζ is the normalized acoustic resistance (represents
the acoustic energy that is radiated by the source to the
far �eld and does not return), χ = −=ζ is the normalized
acoustic reactance (represents the acoustic energy �uc-
tuating in the near �eld), ζ0 is the normalized acoustic
impedance of the piston that only oscillates axisymmet-
rically, whereas ζ1 is the acoustic impedance of the same
piston that is only wobbling, and the integrals Ī0 and Ī1
were presented in Eq. (17a).

3. Numerical analysis

For the purpose of numerical analysis, it is convenient
to perform the following substitution x =

√
1− u2 and

to use the Cauchy's theorem, to present the values from
Eqs. (21b) in the form of

ζ0 = 1− 2i

s2 − 1

∫ ∞
1

F0(s, s1, ka1x)dx

x
√
x2 − 1

, (21a)

ζ1 = 1− 4i

s4 − 1

∫ ∞
1

F1(s, s1, ka1x)dx

x
√
x2 − 1

. (21b)

The above integrals have singularities only at the limits
of integration interval and the integrals are useful for nu-
merical integration. The method of achieving such simi-
lar integrals was presented in detail in [8, 9, 10, 11] and
therefore it was not discussed in this study. Addition-
ally, the exact formulations of the normalized acoustic
impedance of the oscillating and wobbling circular pis-
ton embedded in the �at rigid ba�e can be used. The
formulation suitable for the oscillating circular piston has
been originally presented by Rayleigh [23]

Z0(z) = 1− 2i

∫ ∞
1

J1(zx)H
(1)
1 (zx)dx

x
√
x2 − 1

= 1− 1

z
J1(2z)− i

z
H1(2z), (22a)

whereas the formulation suitable for the wobbling circu-
lar piston has been reported by Mangulis [16]

Z1(z) = 1− 4i

∫ ∞
1

J2(zx)H
(1)
2 (zx)dx

x
√
x2 − 1

= 1 +
2

z

[
J1(2z)− 2

z
J2(2z)

]
+

2i

z

[
H1(2z)− 3

z
H2(2z)

]
, (22b)

where Hn is the Struve function of the order 1, 2 [24],
and z is to be replaced by either ka1 or ska1. The appli-
cation of above formulations enables expressing Eqs. (21)
in the form

ζ0 = 1− s2[1− Z0(ska1)] + 1− Z0(ka1)

s2 − 1

− 2i

s2 − 1

∫ ∞
1

F̃0(s, s1, ka1x)dx

x
√
x2 − 1

, (23a)

ζ1 = 1− s4[1− Z1(ska1)] + 1− Z1(ka1)

s4 − 1

− 4i

s4 − 1

∫ ∞
1

F̃1(s, s1, ka1x)dx

x
√
x2 − 1

, (23b)

where

F̃n(s, s1, z) = −2sn+1H
(1)
n+1(sz)Jn+1(z)

×− J ′n(s1z)

H
(1)′
n (s1z)

[
Ĥ

(1)
n+1(s, z)

]2
(24)

is the reduced version of Eq. (17b).

Applying Eqs. (20) and (22)�(24) enabled performing
a number of numerical analyses and examining the im-
pact of the circular cylindrical ba�e on sound radiation
as well. It was assumed for this purpose that the mean
square of oscillation velocity of the piston is equal to the
mean square of its wobbling velocity,∫

S

|v0|2dS =

∫
S

|v1(r, ϕ)|2dS, (25)

where v1(r, ϕ) = (r/a1)|v1|| cos(β − ϕ)|, which led to the
following condition

κ =
2√

s2 + 1
(26)

and enabled comparing the acoustic impedance of the pis-
ton oscillating only � and the acoustic impedance of the
piston wobbling only. This assumption led to the follow-
ing formulation of the normalized superimposed acoustic
impedance:

ζ =
1

2
(ζ0 + ζ1), (27)

being the complex arithmetic mean value of both � the
acoustic impedance ζ0 the piston oscillating only � and
the acoustic impedance ζ1 the piston wobbling only.

The curves of the normalized acoustic impedance of os-
cillating and wobbling piston are presented in Fig. 4 for
di�erent values of the quotient s1 = a2/a1. In the case
of no circular cylindrical ba�e (s1 = 0.0), this quantity
is a complex superposition of the acoustic impedance of
both kinds of the piston's vibrations (cf. Eq. (15)). As
the result, the global maximum of the acoustic resistance
is shifted towards the greater values of wavenumber k,
compared to the remaining curves in this �gure. Intro-
ducing the ba�e for s1 = 0.5 causes the appearance of
clear local maxima as the result of scattering of acoustic
waves on the circular cylindrical ba�e. The increase of
the quotient s1 to its maximum value equal to 1.0, causes
shifting the global maximum of the acoustic resistance
towards the lower values of k, compared to the remain-
ing curves. This fact is important since the normalized
acoustic resistance is equivalent to the sound radiation
e�ciency of the source. For this reason, the value of
s1 = 1.0 was assumed in the following �gures.
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Fig. 4. The normalized acoustic impedance ζ = θ− iχ
of oscillating and wobbling piston for s = 2.0: (a) resis-
tance θ, (b) reactance χ. Solid line � s1 = 0.0; dashed
line � s1 = 0.5; dotted line � s1 = 1.0.

Fig. 5. The normalized acoustic impedance ζ = θ− iχ
of oscillating and wobbling piston for s1 = 1.0: (a) re-
sistance θ, (b) reactance χ. Solid line � s = 1.2; dashed
line � s = 2.0; dotted line � s = 5.0.

Fig. 6. The normalized acoustic impedance ζ = θ− iχ
of a vibrating piston for s = 2.0 and s1 = 1.0: (a) re-
sistance θ, (b) reactance χ. Solid line � oscillating only,
ζ = ζ0; dashed line � wobbling only, ζ = ζ1; dotted line
� oscillating and wobbling, ζ = 1

2
(ζ0 + ζ1).

The normalized acoustic impedance of oscillating and
wobbling piston is presented in Fig. 5 for three di�erent
values of the geometric parameter s = a2/a1. For the
smallest analyzed value of s = 1.2, the global maximum
of acoustic resistance is the most strongly shifted towards
the higher values of k which means that the sound radia-
tion e�ciency assumes the smallest values for the smaller
values of k. Increasing the value of s up to 2.0 and more
causes an increase in the sound radiation e�ciency for
smaller values of k. Redundant increasing of s (up to 5.0
and more) is pointless since the cross section area of the
circular cylindrical ba�e becomes small compared to the
area of a vibrating piston and the scattering of acoustic
waves on the cylinder then becomes small for small val-
ues of k. Therefore, the value of s = 2.0 was assumed in
further analysis.
The acoustic impedance of a vibrating piston is pre-

sented in Fig. 6 for the piston oscillating only, for the
piston wobbling only and for the piston which oscillates
and wobbles at the same time. The curves presented con-
�rm the obvious fact that the wobbling piston is a much
less e�cient radiator than the oscillating piston in the in-
terval of small values of k. In the interval of higher values
of k, the wobbling piston corresponds to the highest value
of the normalized acoustic reactance, which implies the
greatest �uctuations of the acoustic energy in the near
�eld. However, the knowledge of the radiation impedance
of a wobbling piston is important due to the asymmetric
distribution of the acoustic �eld (cf. Eq. (13)).

4. Concluding remarks

The Green function for the region above a �at screen,
around semi in�nite circular cylindrical ba�e was used
[17] which provided the rigorous solution to the wave
equation and enabled calculating the acoustic pressure
amplitude of an oscillating and wobbling annular piston
embedded concentrically in a perpendicular �at screen
surrounding the cylinder. At the assumed velocity dis-
tribution of the piston, both the sound pressure and the
acoustic impedance are the superpositions of these quan-
tities of the piston oscillating only and the piston wob-
bling only. For this reason, the acoustic impedance does
not depend on the initial phase di�erence of oscillations
and wobbling. It is important to emphasize that the su-
perposition of acoustic impedance is valid in the case of
the vibrating piston, whereas in the case of plates and
membranes the determination of sound power requires
also the use of intermodal impedance coe�cients. The
acoustic impedance of a wobbling piston does not depend
on the spatial location of the nodal diameter, on which
the sound pressure distribution obviously depends. The
e�ect of acoustic waves scattering on the cylinder is im-
portant since it increases the sound radiation e�ciency
in the range of low wavenumbers both for the oscilla-
tions impedance (agrees with the conclusions presented
in [8]) and for the wobbling impedance. Furthermore, the
increase in the radius of the cylinder decreases the am-
plitude of local oscillation of the acoustic resistance and
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reactance as functions of the wavenumber. The e�ect of
the ratio of the outer and inner radii s of the piston on
the acoustic impedance of wobbling is the same as in the
case of the e�ect on the acoustic impedance of oscillating
(cf. [8]). For practical reasons, however, s should be nei-
ther too small (s→ 1) nor too big (1� s). Based on the
numerical analysis it was found that the optimum value
of s is about 2.0. It was also found that the sound radia-
tion e�ciency of the piston wobbling only is much smaller
for small values of the wavenumber than in the case of
the piston oscillating only. However, the knowledge of
acoustic impedance of the wobbling piston is important
due to the asymmetric distribution of the resultant sound
pressure.
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