
Vol. 123 (2013) ACTA PHYSICA POLONICA A No. 6

Acoustic and Biomedical Engineering

Modeling of a Circular Plate with Piezoelectric Actuators of

Arbitrary Shape

M. Wiciak
a,∗

and R. Trojanowski
b

aCracow University of Technology, Institute of Mathematics, Warszawska St. 24, 31-155 Cracow, Poland
bAGH � University of Science and Technology, Faculty of Mechanical Engineering and Robotics

Department of Mechanics and Vibroacoustics, al. A. Mickiewicza 30, 30-059 Krakow, Poland

This paper is concerned with mathematical aspects and numerical modeling of vibration of a circular plate with
piezoelectric actuators. Particularly, a thin Kirchho�-Love plate with arbitrary shaped actuators (e.g. pie-shaped,
trapezoid, disc, and rectangular) is considered. In the theoretical model, the moments that act upon a structure
and are induced by piezoelectric actuators are described by the generalized tensor product of a distribution and
distribution-valued function. Numerical computations utilize the FEM approach supported by Ansys software.

DOI: 10.12693/APhysPolA.123.1048

PACS: 43.40.At, 43.40.Vn

1.Introduction

The possibility of active vibration control for mini-
mization of acoustic energy radiated by vibrating sur-
face elements was explored for over 50 years [1]. The
advantage of using di�erently shaped, distributed actu-
ators for active control was demonstrated by a number
of researchers, e.g. [2�5]. Many works deal with di�er-
ent problems like optimal placement of actuators [6, 7],
using speci�c con�gurations [8]. There are also works
that try to use elements typically used in active meth-
ods in passive systems [9, 10]. Among plates of various
shapes, circular plates seem to have a particular impor-
tance [5] due to their axial symmetry. Circular geome-
tries are used in a wide variety of applications and are of-
ten easily manufactured. In [11], a thin rectangular plate
with arbitrary shaped actuators (e.g. triangles, parallel-
ograms, discs) is considered. The theoretical model for
a structure is given in a language of distribution-valued
function. Also, the formula for the solution of the Cauchy
problem in the class of absolutely continuous tempered
distribution-valued functions is derived.
This paper presents an analytical approach to model-

ing circular plates with piezoelectric actuators of arbi-
trary shape. In particular, pie-, trapezoid-, disc-, and
rectangular-shaped actuators are considered. The nat-
ural tool to describe a structure that consists of a plate
and a piezoelectric actuator is the theory of distributions.
The moments that act upon a structure and are induced
by piezoelectric actuators are expressed as the general-
ized tensor product of a distribution and distribution-
valued function. For two actuator shapes (rectangular
and disc), numerical models of a circular plate with two
piezo elements attached are created. The analysis uses
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the FEM method for structural vibrations. One of the
piezo elements acts as an exciter and the other as an
actuator for vibration reduction.

2. Mathematical formulation of the problem

2.1 Equation of motion

Let us consider a thin circular plate of thickness h0 and
radius R, and under the action of external forces and mo-
ments. The plate is also assumed to be made of linearly
elastic, homogeneous and isotropic material of mass den-
sity ρ. The equation of motion for this plate is ([5]):

D∇4w +Dµ
∂

∂t
∇4w + ρh0

∂2w

∂t2
= F, (1)

where w = w(t, r, θ)is transverse displacements, ∇4 =
∇2∇2, and

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
(2)

is the Laplacian operator in polar coordinates r, θ. More-
over, F = F (t, r, θ) is the external excitation, µ is internal
damping loss factor, D = Eh30/12(1− ν2) is the �exural
rigidity of the plate, ν and E are the Poisson ratio and
Young's modulus, respectively.
Additionally, consider a piezoelectric actuator adhered

to the plate. The actuator consists of two identical
pie-shaped piezoelectric elements of thickness h, bonded
symmetrically on two opposite surfaces of the plate. The
two elements are excited by opposite voltages and the
actuator generates external excitation of the distributed
moment type in the plate. It is assumed that the reac-
tion moments mr and mθ in polar coordinates are equal
and uniformly distributed. Let Fpe = Fpe(t, r, θ) be an
additional external stress caused by activating the piezo-
electric element. Then ([1, 5]):

Fpe =
∂2mr

∂r2
+

2

r

∂mr

∂r
+

1

r2
∂2mθ

∂θ2
− 1

r

∂mθ

∂r
(3)

and
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mr = mθ = m = C0εpeχ, (4)

where C0 denotes the piezoelectric strain-plate moment
coupling term, εpe = d31V/h is the magnitude of the
induced strain, d31 piezoelectric-strain constant, V is the
applied voltage, and χ is a characteristic function de�ned
on the area of the piezoelectric actuator Γ ,

χ(r, θ) =

{
1 if (r, θ)∈ Γ

0 if (r, θ)/∈ Γ
. (5)

The function χ is not di�erentiable (even not continuous)
but the derivatives of mr = mθ = m can be understood
in the sense of the theory of distribution. Namely, any
locally summable function χ : R2 → R de�nes regular
distribution by means the formula

[χ](ϕ) =

∫ 2

R2

χ(r, θ)ϕ(r, θ)drdθ (6)

for any test function ϕ ∈ D(R2). Since χ is assumed to
be a characteristic function on Γ

[χ](ϕ) =

∫
Γ

ϕ(r, θ)drdθ (7)

for ϕ ∈ D(R2). Let us also recall that for any multi-index
α ∈ N2, the derivative DαT of distribution T ∈ D′(R2)
is given by

DαT (ϕ) = (−1)|α|T ( ∂|α|

∂rα1∂θα2
ϕ) (8)

for ϕ ∈ D(R2), where α = (α1, α2) and |α| = α1 + α2.

Thus one can see that the formulae for distributions ∂
2m
∂r2 ,

∂m
∂r ,

∂2m
∂θ2 and ∂m

∂r in (3) depend on the shape of Γ .

2.2. Pie-shaped actuator

Consider at �rst a pie-shaped actuator bonded to the
plate as shown in Fig.1. In this case

Γ = {(r, θ) : R1 ≤ r ≤ R2, θ1 ≤ θ ≤ θ2}. (9)

It is convenient [1,2,4,11] to treat the distribution [χ] as
a tensor product,

[χ] = [Hθ1 −Hθ2 ]⊗ [HR1 −HR2 ] , (10)

where Ha is a Heaviside step function, Ha(x) = 1 for
x ≥ a and Ha(x) = 0 for x < a.

Fig. 1. Pie-shaped piezo actuator.

Let us recall [12, 11] that tensor product of distribu-
tions T, S ∈ D′(R) is a distribution S ⊗ T ∈ D′(R2)

de�ned as

(S ⊗ T )(ϕ) = S(θ 7−→ T (ϕ(·, θ)). (11)

In the above, the distribution T ∈ D′(R) operates on test
functions of variable r, while S ∈ D′(R) is a distribution
on test functions of variable θ. It is well known that for
any ϕ ∈ D(R2), the mappings R 3 r 7→ ϕ(r, θ) ∈ R for
�xed θ, and R 3 θ 7→ T (ϕ(•, θ)) ∈ R are test functions of
variables r and θ, respectively. It is also known [12] that
the following formulae for derivatives are true:

∂k

∂rk
(S ⊗ T ) = S ⊗ dk

drk
T,

∂k

∂θk
(S ⊗ T )

=
dk

dθk
S ⊗ T. (12)

According to (8) one can easy compute

d

dx
[Ha](ϕ) = − [Ha] (ϕ

′) = −
∫ ∞
a

ϕ′(x)dx =

ϕ(a) = δa(ϕ) (13)

for ϕ ∈ D(R),where δa is the Dirac distribution and for
any ϕ ∈ D(R), δa(ϕ) = ϕ(a). Thus

d

dx
[Ha] = δa. (14)

Thereby on account of (4), (10), (12), (14) one can obtain

∂m

∂r
= C0εpe [Hθ1 −Hθ2 ]⊗ (δR1

− δR2
) , (15)

∂2m

∂r2
= C0εpe [Hθ1 −Hθ2 ]⊗

(
δ′R1
− δ′R2

)
, (16)

∂2m

∂θ2
= C0εpe

(
δ′θ1 − δ

′
θ2

)
⊗ [HR1

−HR2
] , (17)

where, for short, δ′Ri
, δ′θi denote d

dr δRi and d
dθ δθi ,

derivatives of distributions δRi
, δθi ∈ D(R), respectively

(i = 1, 2). Finally, the external loads due to the actuator
are

Fpe = C0εpe ([Hθ1 −Hθ2 ]

⊗
(
δ′R1
− δ′R2

+
1

r
δR1 −

1

r
δR2

)
+

1

r2
(
δ′θ1 − δ

′
θ2

)
⊗ [HR1

−HR2
]

)
. (18)

2.3. Trapezoid or disk-shaped actuator

Now, let us turn to the case of a bit more complicated
shapes of piezoelectric actuators. Consider trapezoid or
circular actuator which is bonded to the plate as shown
in Fig. 2 and Fig. 3, respectively. It is assumed that par-
allel sides of a trapezoid-shaped actuator are also parallel
to a tangent to the plate edge, and are given by the equa-
tions y = ax + b1, y = ax + b2, 0 < b1 < b2 < R. As
far as a disk-shaped actuator is considered it is claimed
that the actuator is enclosed by a circle with the centre
at the point (a, b) and a radius r0. Analogously to the
case of pie-shaped actuator the internal moments across
the piezoelectric can be expressed as (4) and (5), where

Γ = {(r, θ) : r1(θ) ≤ r ≤ r2(θ), θ1 ≤ θ ≤ θ2}, (19)

and
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Fig. 2. Trapezoid shaped piezo actuator.

Fig. 3. Disc-shaped piezo actuator.

ri(θ) =
bi

sin θ − a cos θ
for i = 1, 2, (20)

in the case of trapezoid-shaped actuator, and

r1,2(θ) = a cos θ + b sin θ

∓
√
r20 − (a sin θ − b cos θ)2, (21)

in the case of disk-shaped actuator, where θ1 and θ2 are
the slopes of the tangent to the circle from the center of
the plate [5].

Unfortunately, in both above cases the distribution
[χ] cannot be treated as a tensor product of distribu-
tions since ri is a function of θ and [Hri ] is not longer
a distribution but a distribution-valued function, R 3
θ 7→

[
Hri(θ)

]
∈ D′(R). A simple example showing

that even when a distribution S depends only on θ and
T (θ) ∈ D′(R) is a distribution depending on r, the ten-
sor product is not a distribution, can be constructed [11].
For this reason, a generalized tensor product will be used.

For the convenience of the reader, we recall that if
S ∈ D′(R) and a distribution-valued function T : R 3
θ 7→ T (θ) ∈ D′(R) is of class C∞, then the generalized
tensor product of S and T , S ⊗ T , is a distribution, and
is de�ned by

(S ⊗ T )ϕ = S(θ 7→ T (θ)ϕ(·, θ)) (22)

for any ϕ ∈ D(R2). The following formulae for deriva-
tives of S ⊗ T are also true [11]:

∂k

∂rk
(S ⊗ T ) = S ⊗ dk

drk
T (•), (23)

∂k

∂θk
(S ⊗ T ) =

k∑
i=0

(
k

i

)
di

dθi
S ⊗ T (k−i), (24)

where the symbols ∂k

∂rk
, dk

drk
, ∂k

∂θk
, di

dθi denote derivatives

of distributions in accordance with (8), while T (j) means
the j-th derivative of the map T .
Consequently, the internal moments across the

trapezoid- and disk-shaped piezoelectric element can be
expressed as the generalized tensor product

mr = mθ = m = C0εpe [Hθ1 −Hθ2 ]

⊗
[
Hr1(θ) −Hr2(θ)

]
. (25)

Since for any θ ∈ R and ϕ ∈ D(R),[
Hri(θ)

]
ϕ =

∫ ∞
ri(θ)

ϕ(r)dr, i = 1, 2, (26)

the derivative of the map R 3 θ 7→
[
Hri(θ)

]
∈ D′(R) is

given by[
Hri(θ)

]′
= −r′i(θ) · δri(θ) for i = 1, 2, (27)

and[
Hri(θ)

]′′
= (r′1(θ))

2 · δ′ri(θ) − r
′′
i (θ) · δri(θ),

for i = 1, 2. (28)

Therefore from (25, 24) the second derivative of m with
respect to θ is obtained as equaling

∂2m

∂θ2
= C0εpe

(
[Hθ1 −Hθ2 ]⊗

[
(r′1(θ))

2 • δ′r1(θ)

− (r′2(θ))
2 • δ′r2(θ) + r′′1 (θ) · δr1(θ) − r

′′
2 (θ) • δr2(θ)

]
−2 (δθ1 − δθ2)⊗

(
r′1(θ) • δr1(θ) − r

′
2(θ) · δr2(θ)

)
+
(
δ′θ1 − δ

′
θ2

)
⊗
[
Hr1(θ) −Hr2(θ)

])
. (29)

Similarly, in accordance with (25, 23), the derivatives of
m with respect to r are

∂m

∂r
= C0εpe

(
[Hθ1 −Hθ2 ]⊗

d

dr

[
Hr1(θ) −Hr2(θ)

])
= C0εpe

(
[Hθ1 −Hθ2 ]⊗

(
δr1(θ) − δr2(θ)

))
, (30)

and
∂2m

∂R2
= C0εpe

(
[Hθ1 −Hθ2 ]⊗

(
δ′r1(θ) − δ

′
r2(θ)

))
. (31)

Consequently,

Fpe = [Hθ1 −Hθ2 ]⊗
((

1 +
1

r2
(r′1(θ))

2
)
δ′r1(θ)

−
(
1 +

1

r2
(r′2(θ))

2
)
δ′r2(θ)

+
1

r2

(
(r+r′′1(θ)) δr1(θ) − (r+r′′2(θ)) δr2(θ)

)
+

1

r2
(
δ′θ1 − δ

′
θ2

)
⊗
[
Hr1(θ) −Hr2(θ)

]
−2 1

r2
(δθ1 − δθ2)⊗

(
r′1(θ) • δr1(θ) − r

′
2(θ) • δr2(θ)

))
.

(32)

In particular, in the case of trapezoid-shaped actuator,
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r′i(θ) = −
bi

(sin θ − a cos θ)2
(cos θ + a sin θ), (33)

and

r′′i (θ) =
bi

(sin θ − a cos θ)3

×
(
2 + a2 −

(
1− a2

)
sin2 θ + a sin(2θ)

)
, (34)

whereas, in the case of disk-shaped actuator, derivatives
of ri are given by

r′1,2(θ) = −a sin θ + b cos θ

±
(
a2 − b2

)
sin 2θ − 2ab cos 2θ

2
√
r20 − (a sin θ − b cos θ)2

, (35)

and so

r′′1,2(θ) = −a cos θ − b sin θ

±
(
a2 − b2

)
cos 2θ + ab sin 2θ

r20 − (a sin θ − b cos θ)

2

∓1

8

((
a2 − b2

)
sin 2θ − 2ab cos 2θ

)2
r20 − (a sin θ − b cos θ)2

. (36)

2.4. Rectangular actuators

Consider now a rectangular actuator which is bonded
to the plate as shown in Fig. 4. Let us assume that two
parallel sides of the rectangle are parallel to a tangent
to the plate edge, and are represented by the equations
y = ax + b1, y = ax + b2, 0 < b1 < b2 < R. Let
y = −1/ax + bi, i = 3, 4, b3 < b4, denote the equations
of two other parallel sides of rectangle.

Fig. 4. Rectangular shaped piezo actuator.

Denote also by (xi, yi) the vertexes of the rectangle for
i = 1, . . . , 4 and θi = tan−1 (yi/xi), as shown in Fig. 4.
Analogously to previous sections, the reaction moments
across the rectangular actuator can be described bymr =
mθ = m = C0εpe[χ], where χ is a characteristic function
of the region Γ covered by the rectangular actuator [3].
To provide the parameterization of Γ in polar coor-

dinates we need to decompose it into three subregions,
Γ = Γ1∪Γ2∪Γ3, determined by Γ1 = {(r, θ) : r1(θ) ≤ r ≤
r4(θ), θ2 ≤ θ ≤ θ1},Γ2 = {(r, θ) : r1(θ) ≤ r ≤ r2(θ), θ4 ≤
θ ≤ θ2}, and Γ3 = {(r, θ) : r1(θ) ≤ r ≤ r3(θ), θ3 ≤ θ ≤
θ4}, where

ri(θ) =
bi

sin θ − a cos θ
for i = 1, 2,

ri(θ) =
bi

sin θ + 1
a cos θ

for i = 3, 4. (37)

Thus the distribution [χ] can be expressed as a sum

[χ] = [Hθ2 −Hθ1 ]⊗
[
Hr1(θ) −Hr4(θ)

]
+ [Hθ4 −Hθ2 ]⊗

[
Hr1(θ) −Hr2(θ)

]
+ [Hθ3 −Hθ4 ]⊗

[
Hr1(θ) −Hr3(θ)

]
. (38)

With (3) taken into account an easy computation shows
that

Fpe = C0εpe

×
(
[Hθ3 −Hθ1 ]⊗

1

r2

[ (
r2 + (r′1(θ))

2
)
δ′r1(θ)

− (r + r′′1 (θ)) δr1(θ)

]
+ [Hθ2 −Hθ4 ]

⊗ 1

r2

[ (
r2 + (r′2(θ))

2
)
δ′r2(θ) − (r + r′′2 (θ)) δr2(θ)

]
+ [Hθ4 −Hθ3 ]⊗

1

r2

[ (
r2 + (r′3(θ))

2
)
δ′r3(θ)

− (r + r′′3 (θ)) δr3(θ)

]
+ [Hθ1 −Hθ2 ]

⊗ 1

r2

[ (
r2 + (r′4(θ))

2
)
δ′r4(θ) −

(
r + r′′4 (θ)

)
δr4(θ)

]
1

r2

[
δ′θ1 ⊗ [Hr4 −Hr1 ] + δ′θ2 ⊗ [Hr2 −Hr4 ]

+δ′θ3 ⊗ [Hr1 −Hr3 ] + δ′θ4 ⊗ [Hr3 −Hr2 ]
]

+
2

r2
δθ1 ⊗

[ (
r′1δr1 − r

′
4δr4

)
+ δθ2 ⊗

(
r′4δr4 − r

′
2δr2

)
+δθ3 ⊗

(
r′3δr3 − r

′
1δr1

)
+ δθ4 ⊗

(
r′2δr2 − r

′
3δr3

) ])
.

(39)

Note that derivatives of curves ri = ri(θ) for i = 1, 2 are
given by formulae (33), (34), while for i = 3, 4 one can
obtain

r′i = −
bi

(sin θ + 1
a cos θ)

2

(
cos θ − 1

a
sin θ

)
, (40)

and

r′′i =
bi(

sin θ + 1
a cos θ

)3
×
(
2 +

1

a2
−
(
1− 1

a2

)
sin2 θ − 1

a
sin 2θ

)
. (41)

Finally it should be noted that it is possible to describe
external loads due to another shapes of actuators in anal-
ogous way. Also one can build a model for transverse dis-
placement when a set of actuators is considered. In this
case the term of external loads is a sum of distributions
that describe single actuator.
Let us note that the solution of (1) exists in the sense

of the theory of distributions. The theorem on existence
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of the solution and analytic formulae for the solution can
be found in [13]. Equation (1) can be also solved using
classical methods based on the separation of variables
[2, 3]. An approximate solution can be obtained by the
�nite element method.

3. Numerical calculations

From the above analytical considerations two actua-
tor shapes were chosen for numerical simulations. Those
were disc where the added external is describe by equa-
tions (32), (35), (36) and rectangle where the added ex-
ternal is described by equations (39)�(41), (33), and (34).
Four models consisting of a steel plate with a diameter
equal to 0.15 m and thickness equal to 0.001 m clamped
on the edge and two piezo elements attached were cre-
ated. The �rst element marked by white color is used
for plate excitation but the other one marked by violet
color for vibration reduction. In the �rst two models the
primary excitation was obtained with the use of square
actuator and for reduction a square one and a disc-shaped
one were used (Fig. 5a and b). For the next models the
di�erence was that the piezo element used for plates ex-
citation were disc-shaped (Fig. 5c and d).

Fig. 5. Created models.

All of the modeled piezo actuators had a base area
of 1600 m2 and 1 mm thickness. The element used for
modeling were SOLSH190 for the plate and SOLID226
for actuators. Material constants can be found in Table I.
After performing modal analyses, 6 �rst modes were

chosen for harmonic analyses (although mode 2 and 3
occur for almost the same frequency, so in harmonic anal-
yses they were treated as one). Fig. 6 shows those mode
shapes.

Fig. 6. Modes shapes analyzed.

TABLE I

Model parameters.

Object Element type Other info

plate SOLSH190 ρ = 7500 kg/m3,

E = 2.1× 1011 Pa,

ν = 0.3

piezo element SOLID226 equivalent to PZT4,

A = 600 mm2

For frequencies corresponding to the chosen mode
shapes, harmonic analyses were performed with opti-
mization procedure for the voltage applied to the element
used for vibration reduction. The goal function for opti-
mization was

J = min

( n∑
i=1

uzi

n

)
, (42)

where uzi are vibrations of node i of the plate in the
plane perpendicular to its base, and n number of nodes
creating plates base.

Optimization parameters are shown in Table II, where
V0 is the voltage amplitude applied to the element used
for plates excitation while V1 and ϕ1 are design variables.
V1 is the voltage amplitude applied to the actuator and
ϕ1 is a phase angle of applied voltage as described by the
equation

V = V1e
j(ωt+ϕ1), (43)

where j2 = −1. The maximum number of iterations was
set to 200.

TABLE II

Optimization parameters.

Quantity Range

V0 100 V

V1 0.1�200 V

ϕ1 0�360◦
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3. Results and conclusions

Obtained results are presented in Table III.

TABLE III

Results of the analyses.

mode shape V1 φ1 reduction

excitation reduction [V] [deg] [dB]

1

square
square 100.30 180.00 34.52

disc 104.56 179.14 30.64

disc
square 98.41 179.80 32.97

disc 100.56 179.78 33.97

2 or 3

square
square 17.44 50.45 0.18

disc 17.44 50.45 0.17

disc
square 19.76 62.72 0.18

disc 15.28 26.95 0.15

4

square
square 100.35 0.00 38.83

disc 105.68 359.39 36.73

disc
square 94.92 0.04 37.29

disc 100.38 0.47 37.32

5

square
square 106.94 180.00 3.23

disc 102.06 177.97 3.45

disc
square 80.00 188.31 3.22

disc 76.17 180.13 3.75

6

square
square 99.14 180.00 34.10

disc 104.69 179.99 33.44

disc
square 93.63 180.27 33.26

disc 99.46 179.97 33.42

Examining the results one can say that the di�erences
in vibration reduction obtained with the use of di�erent
shapes of piezo actuators are rather small (with one ex-
ception), and depend on the relation of shapes between
the element used for excitation and the one used for re-
duction. Another thing is that the largest reduction oc-
curs for modes (1, 0), (1, 2, 0) and (2, 0), that occurs
not only when our con�guration is symmetrical but also
when there is a proper placement of actuators.
The di�erence in results for disc-disc con�guration for

modes 2 or 3 is probably the e�ect of the second mode
shape from this pair being observed.
It also appears that for most cases the square shaped

elements need lower voltage to achieve similar e�ect (al-
though the di�erence is rather small and it does not ex-
ceed 6%).
In the paper an analytical model of circular plates with

piezoelectric actuators of arbitrary shape was presented.

The internal moments across the actuator were described
in terms of generalized tensor product of a distribution
and a distribution-valued function. The solution of the
problem exists in the sense of the theory of distributions.
It can be derived by analytic formulae or using classical
methods based on separation of variables. On the other
hand an approximate solution can be obtained by the �-
nite element method. Numerical analyses results showed
large vibration reduction (more than 30 dB) for the �rst,
fourth and sixth mode, and almost no reduction for the
rest of the analyzed modes. If the actuator was placed
symmetrically to the exciter, all 6 modes could easily be
reduced.
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