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Experimental determining of distributions of pulses forcing a linear system, where pulse amplitudes and
occurrence instants are random values, is burdened with errors resulting from uncertainty of the measurement
and the di�erences between the model and the physical phenomenon. The objective of this work is an attempt
to minimize these errors through application of an approximation algorithm that allows to determine parameters
of response of the system to a single pulse forcing. The conclusions issuing from the investigations indicate that
the parameters of the vibrating system should be selected so that the impact of the local deformations that occur
while the system is being forced on the parameters of the system response should be as small as possible.
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1. Introduction

Determining, in a �nite time, the distributions of val-
ues of stochastic pulses forcing a one-dimensional physi-
cal system the state of which is described by means of a
single parameter x varying with time t according to the
equation of motion

d2x

dt2
+ 2b

dx

dt
+ a2x = f(t), (1)

where a and b are constants, and the forcing function
f(t) is a series of pulses amplitudes and occurrence in-
stants are random values, is a complex task. There exists
a mathematical model [1�3] that allows for computing
of distributions from a single motion waveform. Both
in simulations and in experiments it is worth noticing
that, independently of the intensity of the pulses or the
parameters a and b of the vibrating system, in the ini-
tial moments of motion following each �hit� of the pulsed
forcing, signi�cantly changing the values of the stochas-
tic moments, exerts its in�uence on the error that will
burden the determination of the desired distribution. Ex-
periments are additionally burdened with errors resulting
from di�erences between the mathematical model and re-
sponse of the physical system as well as the uncertainty
of the measurement which constitutes another di�culty
as regards the precision of calculations required in the
model.

Although it is known that any model is merely a
certain simpli�cation of an actual physical phenomenon
and therefore its usefulness is limited, it is hard to ex-
plain why di�erent stochastic instants of occurrence and
therefore di�erent distributions of pulses are obtained in
spite of application of the same distributions of hits in
both theoretical and experimental investigations [4]. The
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higher is the intensity of these hits, the greater are these
di�erences, and therefore it is incorrect to adopt the same
substitute parameters a and b in an analysis of a single
system forced by pulses of di�erent intensities.
The subject of this paper is the approximation algo-

rithm that allows for determining of the parameters of
the system response to forcing with a single pulse. It is
necessary to develop approximation techniques anew in
a way making possible to de�ne the physical phenom-
ena that take place in an actual physical system while
it vibrates being forced by a single pulse. This will sub-
sequently lead to determining how the responses of the
system change the moment when the intensity of pulses
is altered.

2. Mathematical model of the impulse value

The solution of Eq.(1) for any f(t) and a > b (subcrit-
ical damping) assumes the form [1, 2]

x(t) = exp(−bt)
(
x0 cos(ct) +

ẋ0 + bx0
c

sin(ct)

)
+
1

c

t∫
0

f(τ) exp (−b(t− τ)) sin (c(t− τ)) dτ , (2)

where c =
√
a2 + b2, and

x0 = x(0), ẋ0 =
dx

dt
(0) (3)

represent initial conditions.
Let a single pulse forcing be considered in the follow-

ing. In the literature of the subject [5], the physically
interpretable quantity characterizing a very (in�nitely in
the theory) short pulse is the impulse I of the forcing
function f(t) de�ned as

I =

∫ ε

0

f(t)dt, (4)

where ε is a time interval representing duration of the
pulse.
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To date, authors of scienti�c studies dealing with vi-
brations of linear systems forced by a single pulse have
been univocal. There exist two di�erent models [5, 6] of
a pulsed forcing f(t), and it is the model representing
the pulse with the help of Dirac delta function [5] that
seems to be more intuitive. Although the two models
di�er as regards the methods of solving the integral in
the equation (2), in the �nal version they arrive at the
same conclusion that forcing with a pulse is equivalent
to evoking free vibrations through a sudden increase of
the initial velocity of the system, i.e. rate of change of
parameter x determining its state, without changing the
parameter itself. This means that x = x0 also imme-
diately after a �hit� of the pulsed forcing. Under such
assumption, motion of the system after occurrence of the
pulsed forcing can be described by means of function

x(t) = η exp(−bt) sin(ct), (5)

where η = I/c. The above formula is used, among others,
in the studies that allow for determining the distribution
of striking pulses [1�3, 7, 8] from the waveform represent-
ing motion of a given vibrating system. Assumptions and
proof the relevant theory can be found in [1, 2, 7]. This
article will discuss the di�culties connected with realiza-
tion and approximation of the response of the system to
a pulsed forcing.

3. Vibrations of an RLC circuit by a single pulse

For practical reasons, mechanical representations of
the system described by Eq. (1) are discussed most fre-
quently, but in order to register actual response of a sys-
tem of that kind to a single pulse, its electric counterpart
is considered in the following. The study was carried out
on a system consisting of inductivity L = 5 mH, capacity
C = 5 nF, and a voltage source. All the elements were
connected in series, and the resistance R came from the
physical components making up the circuit. The mea-
suring unit comprised a measuring computer and a mea-
suring card NI USB-6251 by National Instruments. The
application was built in the Labview 9 environment. The
single pulse was realized with the help of single samples
of the shortest executable duration of 2× 10−6 s, related
to the sampling rate of the card.
The greatest di�culty occurs as early as the level of

executing the experiment � the execution of the force
that achieves high values and operates for such a short
period of time that the system responds to its action with
a change of the initial values only is impossible. Every
measuring card has its characteristics of increase to a
given value and decrease from this value to zero. In view
of this, the process of forcing vibrations in a real system
by a pulse may be divided into three phases (see Fig.
1). The �rst phase is characterized by an increase of the
amplitude of the pulse while in the second phase the pulse
decreases to zero. From the start of the �rst phase to the
end of the second phase, as a result of energy transferred
to the system the initial conditions in system change and
the vibrating motion starts. At the moment when the

free vibrations start, the third phase begins � just after
the end of the pulse, local deformations in the vibrating
system fade away. This phenomenon is visible between
samples 1 and 4 in Fig. 1.

Fig. 1. The waveform representing vibrations of an
RLC circuit (L = 5 mH, C = 5 nF) for three di�erent
experiments. On the left, the �rst four recorded samples
of the RLC circuit response are zoomed in, on the right
the whole course of the system response is shown. The
solid, the dashed, and the dashed-dotted line correspond
to results of experiments #1, #2, and #3, respectively.
The gray solid line represents mathematical model.

The phenomenon of the occurrence and disappearance
of local deformations in�uences the waveform of the reg-
istered response of the real system. In connection with
this, a question arises at which moment the waveform
of the motion forced by the impulse ends and the free
vibrations of the system start. The answer to this ques-
tion is connected with approximation of the registered
response X of the system, representing a series (vector)
of measurements.
An approximation of the recorded waveform X is ob-

tained in the MATLAB environment. On the basis of
subsequent amplitudes of vibrations, two parameters,
b and η, are approximated with the help of the func-
tion fit with the parameter `exp 1', and the function
X1 = η exp(−bt) is computed. The time vector tM cor-
responds to the sampling sequence and consequently its
components assume values tM ,i = 0 s, 10−6 s, 2×10−6 s,
. . . where tM ,1 is the instant of time when the impulse
has its highest value.
By dividing the registered response X of the system

by X1, the parameter c can be determined, e.g. with the
help of function fit with the parameter `sin 1'.
All methods of approximation for numerous varied

cases of X executed with the help of the function fit
with the parameters `sin 1' or `fourier1' consistent with
the expected mathematical model (4) fail (Table I), be-

cause what is dealt with here is a phase shift φ̃ and the
system responds with motion described by

x(t) = η̃ exp(−b̃t) sin(c̃t+ φ̃), (6)

where the tilde over the symbol of a quantity denotes it
approximate value.
The algorithms approximating the response of the sys-

tem to an impulse forcing require determination of a new
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TABLE I

Approximated parameters of the response de-
pending on the starting point of the approxi-
mation.

parameter The starting point is

the �rst sample the second sample

b̃ 4 628.09 4 628.09

η̃ 1.819073 1.810942

c̃ 192371.17 192 84.41

φ̃ �0.134892 0.054419

time vector tm for the values x adopted in the model
(5). The value of the new time vector component tm,1

is sought among those samples of the recorded response
X for which the approximated angle φ̃ changes from the
negative to positive value. The search continues until the
angle φ̃ is close to zero with an assumed precision. The
new time vector is created starting from tm,1 with the
step 10−6 s and for the time vector established this way,
values x according to model (5) are computed.

4. Approximation of vibrations of an RLC

circuit

The goal of approximation of the response of a
system with the help of the function in the form
X = η e−bt sin(ct) is a most accurate possible representa-
tion of the relationship describing the response of a real
system with one degree of freedom to a pulse forcing.
Approximation is carried out by way of comparison of:

• the vector X representing response of a system
recorded at discrete instants of time (points of the
time axis)

• with values x determined in the model for the do-
main of time for which the angle φ̃ is close to zero,

and then through computing the di�erence between cor-
responding components of X and values of x. During
the calculation, the unknown parameters of the function
x that are searched for are η, b, and c, as well as tM ,1

(the starting time of free vibrations).
The algorithms of approximation for determining of

the hypothesis approximating the target function require
repetitive processing of the whole practice set. The learn-
ing process for these algorithms [9] is divided into a num-
ber of repetitions, each of which includes a single process-
ing of a practice example. To make it possible, the algo-
rithm requires determination of the boundary values of
the desired parameters. The values of parameters η and
b presented in Table II are established as the boundary
parameters of the practice set.
The fact that the determined dependence of the target

function on the parameters is burdened with the errors
resulting from the complexity of the function, imprecision
of measurement, digitization of the signal, and di�erences

TABLE II

Two practice sets processed while determining the hy-
pothesis approximating the target function.

practice set #1 practice set #2

start step end start step end

η 1.772624 0.001809 1.844976 1.799760 0.000452 1.817848

b 4572.23 2.31 4664.59 4604.58 0.58 4627.66

between the model and the physical phenomenon must
be taken into account. The total error of approximation
can be minimized through selection of the algorithm pre-
sented below.
The algorithm of determining the desired parameters

is realized the MATLAB environment according to the
following scheme:

1. The values of the practice set � initial values of
the parameters are determined.

2. For the analysis, two subsequent parameters, η and
b,are selected. It is necessary to select these pa-
rameters because approximation is burdened with
an error resulting from digitization of the signal �
it is not possible to �nd the actual maximum and
minimum values among the recorded amplitudes;
only the highest and the lowest ones can be found.

3. For the selected parameters, the function X1 =
η exp(−bt) is computed and the recorded response
of the system is divided by X1.

4. For the obtained function X2 = sin(ct), the pa-
rameter c and the angle φ for two di�erent points
are determined with the help of the function
fit(dt, y, ‘ sin 1′). Between two samples from the
recorded response of the system, the phase angle
changes its sign from negative to positive value.
The point for which the value of angle φ is close
to zero with a certain accuracy is searched for us-
ing the search interval halving. In this way not
only the parameter c is calculated, but also tm,1,
i.e. the time at which one sample of free vibrations
has been recorded.

5. For the RCL system selected for study, the vibra-
tions fade out after 1200 registered samples. Due
to the fact that small de�ections are burdened
with a high uncertainty of measurements (Fig. 1),
the mean di�erence between the physical system
Xi and the model xi is computed for the �rst 1000
samples,

δI =
1

n

n∑
i=1

‖Xi|+ |xi‖, (7)

and saved in a �le.

6. The process is reiterated starting from step 2.
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The result of execution of this algorithm can be seen in
Fig. 2 for three di�erent experiments. The distribution
of di�erences depending on the parameters b and η for the
�rst and second practice set is presented in left and right
column, respectively. The re�nement of the practice set
for the area in which the smallest di�erences between the
model and the physical system were registered does not
signi�cantly reduce the calculated di�erences in any of
the three presented experiments. A similar phenomenon
can be observed while analyzing vibrations of other RLC
circuits.

Fig. 2. The di�erences between approximated re-
sponse of the RLC circuit and the registered one for
the three experiments, calculated with the help of the
formula (7), shown in left and right panels for the �rst
and second practice set, respectively.

It is usually linear models that are studied in practice,
since it is easy to analyze them; in this case we deal with
damping that changes during vibrations. The response of
the RLC circuit is not consistent with model (5), which
probably follows from the very nature of physical systems
and is not a result of forcing discordant with theoretical
assumptions. It is also possible that through introduction
of the measuring card and cables in the RLC circuit, its
characteristics gets changed.

Starting from that moment, the parameters of the RLC
circuit are no longer sought but what is searched for is
the parameters that could substitute the actual response
of the system with a linear model.

The non-linear nature of the phenomenon results in
that determining of the parameters by way of searching
for the minimum values in the tables presented in Fig.
2 does not bring about the expected results. It can be
observed when the search criterion in step 5 of the algo-
rithm is substituted with

δII =
1

n

n∑
i=1

(|Xi| − |xi|) . (8)

One more criterion is also proposed to be used:

δIII =
1

n

n∑
i=1

(
X2

i − x2i
)
. (9)

Registering the mean di�erence (8) and (9) between the
model x and the physical system X as well as using white
and gray color to mark the areas where the di�erences
are greater or less than zero, respectively, it can be seen
that the diagrams below di�er in the inclination angle
of the curve dividing the positive part from the negative
one. Fig. 3 presents results of the �rst experiment only,
since the other two lead to the similar picture.

Fig. 3. The computed di�erences between the recorded
response of the RLC circuit and the approximated one
for the �rst experiment, computed with the use of (8)
and (9), and shown in left and right panel, respectively.

By plotting straight line separating the negative part
from the positive one and comparing the obtained results
depending on whether the algorithm calculates the di�er-
ences from the start or from the subsequent two samples

δII =
1

n− nstart + 1

n∑
i=nstart

(|Xi| − |xi|) , (10)

δIII =
1

n− nstart + 1

n∑
i=nstart

(
X2

i − x2i
)
, (11)

where nstart = 1, 2, or 3, the e�ect of local deviations
occurring in the RLC circuit on the approximation can
be assessed.

Fig. 4. Straight lines demarcating positive and nega-
tive di�erences computed with the use of (8) � solid
lines and (9) � dashed/dotted lines, with characteristic
points A, B, and C marked. See text for explanation.

In Fig. 4 presenting such dividing lines for values x
and x2, one can distinguish three characteristic points:

1. A is the crossing point of black lines, the solid and
the dotted one. It is at this point that the change of
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negative values to positive ones occurs, both from
the di�erence of x and X, and the di�erence of X2

and x2 approximated from sample #1.

2. B is the crossing point of dark gray lines, the solid
and the dashed-dotted one. At this point, the
change of negative values to positive ones occurs,
both from the di�erence of x and X, and the di�er-
ence of X2 and x2 approximated from sample #2.

3. C is the crossing point of light gray lines, the solid
and dotted one. At this point the change from neg-
ative to positive values occurs, both from the dif-
ference of x and X, and the di�erence of X2 and
x2 approximated from sample #3.

The precise parameters obtained from the approxima-
tions for points A, B and C are presented in Table III.

TABLE III

The approximated parameters of the response obtained
from the approximation for the points A, B, and C.

exp. point parameters

b η nstart tM c

1 0.2781 192392.03

A 4614.76 1.810272 2 0.2736 192394.63

3 0.2742 192394.28

1 0.2779 192392.14

#1 B 4618.25 1.810849 2 0.2735 192394.74

3 0.2741 192394.38

1 0.2780 192392.13

C 4617.97 1.810732 2 0.2735 192394.73

3 0.2741 192394.38

1 0.2779 192392.14

A 4618.27 1.810167 2 0.2735 192394.74

3 0.2741 192394.38

1 0.2778 192392.24

#2 B 4621.30 1.810548 2 0.2733 192394.84

3 0.2740 192394.47

1 0.2778 192392.23

C 4620.96 1.810635 2 0.2733 192394.83

3 0.2740 192394.46

1 0.2780 192392.09

A 4616.45 1.810265 2 0.2735 192394.69

3 0.2741 192394.33

1 0.2779 192392.20

#3 B 4620.09 1.810870 2 0.2734 192394.80

3 0.2740 192394.44

1 0.2779 192392.19

C 4619.86 1.810776 2 0.2734 192394.79

3 0.2740 192394.43

The comparison performed for the results of each ex-
periment separately shows that the di�erences between
the parameters obtained at points A, B, and C are sig-
ni�cant. The obtained results are also a�ected by un-

certainty of measurements as well as intervals between
the measurements, which is shown by the analysis of the
values obtained for the particular points A, B, and C in
all three experiments.
The most important thing, however, is that the selec-

tion of the substitute parameters between these points
should be executed by applying the criterion of the least
di�erences δII and δIII. Table IV shows the di�erences
δII and δIII for tM and c approximated from sample #2
for nrmstart = 1 and 2 for 1000 samples.

TABLE IV
Di�erences δII and δIII for tM and c approximated from
the 2nd measurement sample for the variable nstart = 1
and 2, for 1000 samples corresponding to points A, B,
and C (see Fig. 4).

exp. point nstart = 1 nstart = 2

δII δIII δII δIII
A 4.9982×10−6 5.8863×10−7 −9.2916×10−5 −2.8797×10−5

#1 B 1.0437×10−4 2.0485×10−5 6.5526×10−6 −7.7032×10−6

C 1.0605×10−4 3.2650×10−5 8.2239×10−6 4.4728×10−6

A 4.8819×10−6 −2.2980×10−6 −9.3717×10−5 −3.0765×10−5

#2 B 1.0729×10−4 3.9375×10−5 8.7471×10−6 1.0940×10−5

C 7.8102×10−5 9.3000×10−6 −2.0468×10−5 −1.9164×10−5

A 7.6931×10−6 1.0924×10−5 −9.0898×10−5 −1.7529×10−5

#3 B 1.1081×10−4 3.2216×10−5 1.2318×10−5 3.7840×10−6

C 1.1190×10−4 4.1796×10−5 1.3406×10−5 1.3372×10−5

In all the cases presented above, the parameters
recorded for point A should be used; if the measurement
taken from the �rst sample is taken into account in the
considerations, it is the moment when the pulse reaches
the system. If the �rst sample was neglected, determin-
ing the distribution of the values of stochastic pulses in
a �nite time would require taking into account of the
parameters approximated for point B.
Unfortunately, for low intensities of strikes the di�er-

ences δII and δIII may turn out to be signi�cant enough to
result in computation leading to incorrect distributions
of pulses.

5. Conclusion

The response of a physical system to forcing by a
pulsed �hit� reveals features of a non-linear system. The
standard search for a minimum among the di�erences
between the values obtained in the model x and the
recorded response of the system X is insu�cient if the
response of a physical system is to be replaced with a
linear model. Moreover, it is necessary in each case to
take into account the e�ect of deformations that occur
while energy is injected to the system.
Approximation requires application of e�ective meth-

ods, and its results serve for an analysis aimed at selec-
tion of the parameters of the vibrating system so that
the impact of the local deformations on the parameters
obtained as a result of approximation is as small as pos-
sible.
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