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In the paper, the analytical solutions of excited vibrations of the Bernoulli-Euler type beam in general case of
external loading function is analyzed. The distribution theory is applied to formulate solution when the external
functions are the concentrated-force type or the concentrated-moment type. Moreover, two types of excitation
in time domain, harmonic and pulsed, are considered. Due to the superposition rule which can be applied in
the analyzed linear case, any combination of external loading function can be formulated. The strict analytical
solutions are shown for the case of simply supported beam. Describing the external load in the form of concentrated
moments makes possible the analytical simulation of the reduction of vibrations of a beam by application of the
piezoelectric elements which are in practice the source of external moment-type excitation put in relatively small
area of action.
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1. Introduction

The natural way for describing the external excitation
in equation of motion of the Bernoulli-Euler type beam
is putting the loading function in a form of linearly dis-
tributed force q(x, t). In realistic application sometimes
is better to model the external force in a form of set
of concentrated forces Fi(xi, t), or set of concentrated
moments Mj(xj , t). From mathematical point of view,
the concentrated force and moment can be put in the
beam equation of motion with application of the distri-
butions. The most popular distribution used in the the-
ory of vibrations is the Heaviside distribution Θ(x) [1].
In application it makes possible to describe the step-type
of material or geometrical parameters of beams. In the
case of smart beams damped by distributed piezoelec-
tric elements [2] glued to the external surfaces of beam,
the position of each of the elements can be described by
suitable pair of the Heaviside distribution Θ(x−x1) and
Θ(x − x2). The examples of application for theoretical
formulation of the problem can be found in [3�5]. The
other popular distribution is the Dirac delta distribution
δ(x) [1]. The examples of its application to describe the
position of the concentrated force action is given in [6�9]
for beams or in [9, 10] for plates. The place of action and
action of concentrated moment can be described by the
�rst derivative of the Dirac delta distribution δ′(x) [1].
The concentrated moments can be used as the model of
action of piezoelectric distributed elements [4, 11, 12].
In the paper [13], the mathematical problem of analyt-

ical solution of vibration of plates with piezoelectric actu-
ators with arbitrary shape in distribution formulation is
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discussed. In [10], a group of general analytical solutions
for externally excited plates with di�erent boundary con-
ditions (understood as given eigenfunctions) for di�erent
types of concentrated forces and distributed forces are
given.
In the presented paper, a group of general analyti-

cal solutions for externally excited beams with di�er-
ent boundary conditions (understood as given eigen-
functions) for di�erent types of concentrated force, dis-
tributed moment, and distributed force is given. The
given solutions can be applied to analyze of transient vi-
brations of simple realistic structures, as a test cases for
advanced models and for the analysis of the control pro-
cess with application of piezoelectric elements modeled
by concentrated moments.

2. Analytical solution

2.1. Formulation of the problem

Let us consider the problem of excited vibrations of
the Bernoulli-Euler beam with arbitrary boundary con-
ditions

E I ∂4w(x,t)
∂x4 + ρ A ∂2w(x,t)

∂t2 = f(x, t)

f(x, t) = q(x, t) +
N∑
i=1

Fi δ(x− xi)

+
M∑
j=1

Mj
d
dxδ(x− xj)

, (1)

where w(x, t) is the transverse displacement of a beam,
E is the Young modulus of material, ρ is the volume den-
sity of material, I is the moment of inertia of the beam
cross-section, A is the area of the beam cross-section,
Mj(t) is the j-th moment, xj is the point of action of j-
th moment, Fi(t) is the i-th concentrated force, xi is the
point of action of i-th concentrated force, q(x, t) is the
distributed force.

(1029)
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Solution of the problem is a sum of the general solu-
tion of the homogeneous di�erential Eq. (2) connected
with general Eq. (1) � natural vibrations, and a spe-
cial solution of the non-homogeneous Eq. (1) � excited
vibrations.

2.2. The eigen-problem

Let us consider non-excited vibrations of a Bernoulli-
Euler beam with length l. Equation of motion has the
form

E I
∂4w(x, t)

∂x4
+ ρ A

∂2w(x, t)

∂t2
= 0. (2)

Equation of motion should be ful�lled by initial condi-
tions (3) and the boundary conditions (4), where w0(x)
is the initial displacement of the beam for t = 0, and
v0(x) is the initial transversal velocity of the beam for
t = 0:{

w(x, 0) = w0(x)
∂
∂tw(x, 0) = v0(x)

, (3)


w(0, t) = 0 or EI ∂3

∂x3w(0, t) = 0
∂
∂xw(0, t) = 0 or EI ∂2

∂x2w(0, t) = 0

w(l, t) = 0 or EI ∂3

∂x3w(l, t) = 0
∂
∂xw(l, t) = 0 or EI ∂2

∂x2w(l, t) = 0

. (4)

Solution of the problem is proposed in the form (5) �
the Fourier method of solution. After suitable manip-
ulations, it leads solution to the problem of separated

variables (6). The form of unknown functions in spatial
domain can be written in the form (7). For given homo-
geneous boundary conditions (4), these series of functions
satisfy the orthogonality conditions (8). Finally, the so-
lution can be written in the form (9), where series of
constants an and bn are determined based on the initial
conditions (3):

w(x, t) =

+∞∑
n=1

Xn(x)Tn(t), (5)

d4Xn(x)
dx4

Xn(x)
= −ρA

EI

d2Tn(t)
dt2

Tn(t)
= λ4n, (6)

Xn(x) = An sin(λnx) +Bn cos(λnx)+

Cnsh(λnx) +Dnch(λnx)

ωn = λ2n

√
EI
ρA

, (7)

1∫
0

Xn(x)Xm(x)dx =

{
γ2n n = m

0 n 6= m
, (8)



w(x, t) =
+∞∑
n=1

Xn(x)[an sin(ωnt) + bn cos(ωnt)]

an = 1
ωnγ2

n

l∫
0

v0(x)Xn(x)dx.

bn = 1
γ2
n

1∫
0

w0(x)Xn(x)dx

(9)

TABLE I

Values of parameters λn and approximate formulae (after [14, 15])

Boundary conditions λ1 l λ2 l λn l, large n Formula

SS�SS π 2π nπ (exact) sin(λnx) = 0

FR�FR 4.7300 7.8532 2n+1
2
π cos(λnx)ch(λnx) = 1

FX�FX 4.7300 7.8532 2n+1
2
π cos(λnx)ch(λnx) = 1

FX�SS 3.9266 7.0686 4n+1
4
π tan(λnx) = th(λnx)

FX�FR 1.8751 4.6941 2n−1
2
π cos(λnx)ch(λnx) = −1

TABLE II

Eigenfunctions for selected boundary conditions of beam (after [14, 15])

Boundary conditions Xn(x)

SS�SS sin(λnx)

FR�FR [ch(λnx)− cos(λnx)][ch(λnx) + cos(λnx)]− [sh(λnx) + sin(λnx)][sh(λnx) + sin(λnx)]

FX�FX [ch(λnx)− cos(λnx)][ch(λnx)− cos(λnx)]− [sh(λnx) + sin(λnx)][sh(λnx) + sin(λnx)]

FX�SS [sh(λnx)− sin(λnx)][ch(λnx)− cos(λnx)]− [ch(λnx)− cos(λnx)][sh(λnx)− sin(λnx)]

FX�FR [sh(λnx) + sin(λnx)][ch(λnx)− cos(λnx)]− [ch(λnx) + cos(λnx)][sh(λnx)− sin(λnx)]

Finding the solution of the di�erential Eq. (2) for a
given boundary conditions (3) is the well-known eigen-
mode problem which gives a set of eigen-values (powered

natural frequencies of a system ω2
n) and a set of eigen-

functions (eigen-modes, waveforms of eigen-functions
Xn(x)). The values of parameters λn which makes pos-
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sible to �nd natural frequencies (7) for di�erent combi-
nation of typical types of boundary conditions (simply
supported, free, �xed) are given in Table I. The ana-
lytical form of eigen-functions for the same combination
of boundary conditions (simply supported, free, �xed) is
given in Table II. The other name of the problem is the
modal problem. After taking into account the initial val-
ues, the solution (9), representing free vibrations, which
is the response of the system to initial conditions written
in time and spatial domains w(x, t), can be obtained.

2.3. Excited vibrations
When analyzing the excited vibrations of realistic

beam (with internal damping), the general solution of
the homogeneous di�erential equation is a function which
relatively fast tending to zero with respect to time due
to internal and external damping.
The full solution of the problem of excited vibra-

tions, understood as the special solution of the non-
homogeneous Eq. (1), has for excitation function of har-
monic in time domain type, the form of sum of two com-
ponents: connected with a set of natural frequencies ωn,
and connected with external loading frequency ν. Due to
the same result of action of internal and external damp-
ing (as for natural vibrations), the components connected
with set of natural frequencies ωn (free vibrations) are
functions relatively fast tending to zero with respect to
time. Therefore, the solution of exited vibrations is usu-
ally those, connected with the only external loading fre-
quency ν [8, 9, 14]. Such case of vibrations is called as
steady-state case. The complete solution of the problem
which includes free vibrations and excited vibrations in
general formulation, is called as transient vibrations.
Due to application discussed in Introduction, let us

consider the general form of solution of excited vibra-
tions. For such a case, the solution can be proposed in
the form (10) in terms of the functions Xn(x) and se-
ries of unknown functions of time Hn(t). The external
load function existing in Eq. (1) can be represented in
series form (11), in terms of functions Xn(x) and series
of known functions of time Qn(t):

w(x, t) =

+∞∑
n=1

Xn(x)Hn(t), (10)


f(x, t) =

+∞∑
n=1

Xn(x)Qn(t)

Qn(t) =
1
ρA

1
γ2
n

1∫
0

f(x, t)Xn(x)dx
. (11)

Substituting the formulae (10) and (11) into Eq. (1), the
di�erential equation for determination of unknown func-
tions Hn(t) takes the form (12)

d2Hn(t)

dt2
+ ω2

n Hn(t) = Qn(t). (12)

Solution of this equation has the form

Hn(t) =
1

ωn

t∫
0

Qn(τ) sin[ωn(t− τ)] dτ, (13)

known as Duhamel integral.

The given formulae make possible to formulate the an-
alytical solution of excited vibrations of a beam with de-
�ned boundary conditions.

3. Formulation of solution of excited vibration of

beam by application of distribution

3.1. Formulation of the problem

Let us consider excited vibrations of a beam with given
eigenfunctions Xn(x). In the following, the cases when
external loads are described by the Dirac delta distribu-
tion (concentated harmonic force) and its �rst derivative
(concentrated harmonic moment) are analyzed. For each
case of a load there are given: form of the external loads
(f(x, t)), solution in the time domain (Hn(t)), and the
complete solution function of displacements w(x, t).
Due to the superposition rule which can be applied

in the analyzed linear case, any combination of external
load function can be built. Some cases are:
� harmonic concentrated force with constant amplitude
applied at a point x = c

f(x, t) = Fi δ(x− c) sin(νt), (14)

Hn(t) =
1

ρA
Fi

1

γ2n

1

ω2
n − ν2

×[sin(νt)− ν

ωn
sin(ωnt)]Xn(c), (15)

w(x, t) =
1

ρA
Fi

∞∑
n=1

1

γ2n

1

ω2
n − ν2

×[sin(νt)− ν

ωn
sin(ωnt)]Xn(c)Xn(x) (16)

� harmonic concentrated moment with constant ampli-
tude applied at a point x = d

f(x, t) =Mj δ
′(x− d) sin(νt), (17)

Hn(t) = −
1

ρA
Mj

1

γ2n

1

ω2
n − ν2

×[sin(νt)− ν

ωn
sin(ωnt)]

d

dx
Xn(d), (18)

w(x, t) = − 1

ρA
Mj

∞∑
n=1

1

γ2n

1

ω2
n − ν2

×[sin(νt)− ν

ωn
sin(ωnt)]

d

dx
Xn(d) Xn(x) (19)

� pulsed concentrated force with constant amplitude
acting at time t0

f(x, t) = QF δ(x− c) δ(t− t0), (20)

Hn(t) =


0 t < t0
1
ρAQF

1
γ2
n

1
ωn

× sin(ωn(t− t0)) Xn(c) t ≥ t0
(21)

w(x, t) =


0 t < t0
1
ρAQF

∞∑
n=1

1
γ2
n

1
ωn

sin(ωn(t− t0))

×Xn(c)Xn(x) t ≥ t0

(22)

� pulsed concentrated moment with constant amplitude
acting at time t0
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f(x, t) = QM δ(x− d) δ(t− t0), (23)

Hn(t) =


0 t < t0
− 1
ρAQM

1
γ2
n

1
ωn

sin(ωn(t− t0))
× d

dxXn(d) t ≥ t0
(24)

w(x, t) =


0 t < t0

− 1
ρAQM

∞∑
n=1

1
γ2
n

1
ωn

sin(ωn(t− t0))

× d
dxXn(d) Xn(x) t ≥ t0

(25)

3.2. A numerical example

As an example which shows the di�erence between re-
sults obtained just after action of excitation for the beam
with zero initial condition (i.e w0(x) = 0 and v0 = 0 in
formulae (3)), based on the given formula (16) and for-
mulae used for steady-state conditions, the vibration of
a simply supported beam excited by harmonic change in
time domain, concentrated force is considered. The force
applied in the middle of a beam (26) can be expressed in
the form

f(x, t) = F1 δ(x−
1

2
) sin(νt). (26)

The boundary conditions takes a form
w(0, t) = 0
∂2

∂x2w(0, t) = 0

w(l, t) = 0
∂2

∂x2w(l, t) = 0

. (27)

Hence the eigen-functions take the simplest form from
those given in Table II (Xn(x) = sin(λnx), λn = nπ

1 ,

ωn = n2π2

l2

√
EI
ρA , n = 1, 2, . . . ,+∞).

The amplitude of concentrated force is equal to
F1=10 N. The beam was made of steel (E = 2.1 ·1011 Pa,
ρ = 7800 kg/m3) with length of l = 1 m, and square
cross-section 0.01 × 0.01 m2. The angular frequency of
excitation was ν = 60 rad/s. Material damping was ne-
glected. The analytical solution has the form

w(x, t) =
2

1

1

ρA
F1

∞∑
n=1

1

ω2
n − ν2

(28)

×[sin(νt)− ν

ωn
sin(ωnt)] sin(λn

1

2
) sin(λnx).

In the analysis, the �rst �ve modes were considered.

Fig. 1. Displacement in the middle of a beam � com-
plete analytical solution.

Fig. 2. Displacement in the middle of a beam �
steady-state analytical solution.

Fig. 3. Displacement in the middle of a beam � com-
plete FEM solution.

Displacement of the middle of a beam just after be-
ginning of vibrations is shown in Fig. 1. In Fig. 2, the
solution for the steady-state case is shown. Important
di�erence should be noted in values and form of the re-
sponse. For realistic case, due to material damping, the
solution shown in Fig.1 tends to solution shown in Fig. 2
for large values of time. For comparison, the result ob-
tained based on the same assumptions by �nite element
method (FEM) solution (Ansys FEM package, transient
dynamic analysis) is shown in Fig. 3. The solution is the
same as for analytical result shown in Fig. 1 as the form
and range of values is concerned.

4. Conclusions

Application of distributions allows for analytical for-
mulation of the problem of excited vibrations of a beam
loaded by concentrated forces and moments. The method
gives a consistent formulation of the problem.
The analytical solution can be applied for veri�cation

of the solutions obtained by approximate approach e.g.
by FEM.
Possibility of describing external load in the form of

concentrated moments, allows for the analytic simulation
of the reduction of vibrations of a beam by application
of the piezoelectric elements, which are in practice the
source of external moment type excitation put in rela-
tively small area of the beam.
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To consider material damping in long-time analysis
starting at the beginning of the vibrations, the analytical
solution with damping should be applied (equation of mo-
tion of a beam with internal damping). For the analysis
su�ciently late after start of vibrations, the steady-state
solution can be applied.
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