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Electrical Resistivity of the Monoatomic Metallic Layer
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We present new formula which describes the change of electrical resistivity of a monoatomic metallic layer with
temperature. The results are compared with those given by the Bloch�Grüneisen formula for bulk metals. Our
calculated values compared with those for bulk materials are signi�cantly higher at low temperatures (T < 0.1θ) and
apparently lower at the remaining range of temperatures. Both e�ects can be explained by the low dimensionality
of the sample.
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1. Introduction

In recent decades nanotechnology has contributed
largely in various �elds including electronics, material sci-
ence, chemistry and biology. There is no doubt that con-
ductivity (or resistivity) of bulk metallic materials should
in apparent way di�er from that of materials downsized
to nanoscale. That is why transport properties of charge
and spin in such systems have been the �eld of inter-
ests for many scientists. Fuchs [1] and Sondheimer [2]
explained the increase of resistivity with decrease of �lm
thickness in a semiclassical way. In this theory the change
of the resistivity, ρ, comes from di�use surface scattering
events when the ratio of �lm thickness to electronic mean
free path, d/l, becomes small. Later theoretical stud-
ies on quantum size e�ects in thin metallic �lms with
perfect surfaces were made by Sandomirskii [3]. More
extended work by Ashcroft and Trivedi [4] involves dis-
creteness of the energy levels, e�ects of impurity poten-
tials and surface roughness. Palasantzas and De Hosson
[5] also investigated the in�uence of roughness on the
electrical conductivity of thin semiconducting and metal-
lic �lms. They simulated quasi-layer-by-layer growth of
the �lm and described the electron transport by means of
Boltzmann-like transport theory. Meyerovich and Pono-
marev [6] studied the e�ect of surface roughness on quan-
tum size e�ects in thin �lms. They calculated the de-
pendence of the conductivity on the �lm thickness. Elec-
tronic properties of ultrathin Cu and Fe �lms in the thick-
ness range between 1 and 32 monolayers were studied by
Fedorov et al. [7]. They got interesting results for the
density of states and plasma oscillations but presented
no results for conductivity. Experimental results of the
resistivity in very thin copper �lms (approximately 10�
150 nm thick) were obtained by Yarimbiyik et al. [8].
They found the dependence of the resistivity on the thick-
ness but not on the temperature.
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The in�uence of temperature on the resistivity of
nanosystems rarely was the subject of interest. To our
knowledge only Kravchenko and Klapwijk [9] measured
the temperature dependence of the resistivity in a two-
-dimensional (2D) electron system in the temperature
range from 35 mK to 1 K. Thus we took up the task to
calculate theoretically this dependence for such system
in a wider range of temperatures. The theory describ-
ing the dependence of the electrical resistivity of metals
on temperature was �rst introduced by Bloch [10, 11].
However this theory was formulated for bulk materials
then it is not immediately applicable to systems strongly
constricted in one or more dimensions. Fortunately, the
quasiclassical approach based on the Boltzmann equa-
tion may be applied to this problem after appropriate
modi�cations [12, 13].
In this article we consider a single mono-atomic metal-

lic layer through which a 2D electron gas is moving.
Charge carriers are scattered by thermal lattice vibra-
tions, i.e. phonons. The system is assumed to be exactly
two-dimensional and is treated semiclassically. The elec-
trical resistivity calculated on this basis di�ers from the
well-known Bloch�Grüneisen formula.

2. Theoretical model

Before we proceed with calculations we are going to say
a few words about the model. Because of reduction of the
dimensions we are replacing the Fermi/Debye sphere by
a Fermi/Debye circle so that every electron/phonon wave
vector lies in a plane within the circle. For clarity we do
not use di�erent symbols for k, q, etc. but we shall keep
in mind that our system is two-dimensional.
We start from the variational expression for the elec-

trical resistivity given by Ziman [14]:

ρ =
1

kBT

∫∫∫
(φk − φk′)

2 Pk′

k,q dkdk
′dq∣∣∣ 1

2π2

∫
evk · uφk

∂f0
k

∂Ek
dk
∣∣∣2 , (1)

where k,k′� electron wave vectors before and after scat-
tering, respectively, q � phonon wave vector, kB � the
Boltzmann constant, T � temperature, φk � deviation

(770)
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from equilibrium of the electron distribution function,
Pk′

k, q � transition probability from the state k to the

state k′ due to electron�phonon interaction, e � elec-
tron charge, vk � electron group velocity, f0k � electron
distribution function, εk � electron energy.
We assume that the phonon system is in thermal equi-

librium so that for phonon distribution function φq = 0.
Choice of the φk function is not crucial and for our cal-
culation we shall use the standard trial function

φk = k · u, (2)

where u � unit vector in the direction of external �eld.
The denominator is then given by∣∣∣∣ 1

2π2

∫
evk · uφk

∂f0k
∂Ek

dk

∣∣∣∣2 =

(
ekFς

4π2~

)2

, (3)

where kF � Fermi radius, ς � Fermi circle circumfer-
ence.
Much more e�ort must be made to calculate the nu-

merator. Because calculations are complex we shall walk
through them step by step. The transition probability
due to electron�phonon interaction is

Pk′

k,q =

(
π

mNAω

)
δg,k′−k−q

∣∣Fq,p(k,k
′)
∣∣2

×O(εk + ~ω − εk′)n0qf
0
k(1− f0k′), (4)

wherem� ion mass, NA � number of unit cells per unit
area, n0q � phonon occupation number, g � reciprocal
lattice vector, p � polarization of the phonon, ~ω is the
phonon energy and O is the Landau symbol.
For longitudinal phonons we �nd the Fq,p(k,k′) func-

tion to be

Fq,p(k,k
′) = eq,p · (k′ − k) · `(|k′ − k|), (5)

where eq,p is the polarization vector of the phonon
and `(K) is a quantity which has the dimension of energy
and depends on the magnitude of the scattering vector

K = k′ − k. (6)

Putting all this together we can write down the varia-
tional integral

π

kBTmNAω

∫∫∫
(K · u)2(K · e)2`2(K)f0k(1− f0k′)

× n0qO(εk + ~ω − εk′)δg,k′−k−q dkdk
′dq. (7)

Using the same simplifying method as Ziman [14] we
obtain the following equation for electrical resistivity:

ρ =
2π~

e2mNAkBT

1

k2Fς
2

×
∫∫

(K · u)2(K · e)2`2(K)

(1− e−~ω/kBT )(e~ω/kBT − 1)

dς

v

dς ′

v′
, (8)

where v is the electron velocity.
Following Ziman [14] we assume that N -processes are

the only scattering processes taking place. For this pro-
cesses the polarisation vector e is parallel to q, which
then equals K. We can write that

(K · e)2 = K2 = q2, (9)

and thanks to system symmetry

(K · u)2 =
1

2
K2 =

1

2
q2. (10)

We calculate the resistivity ρ given by Eq. (8) changing
the variables in the �rst integral over dς to kFdφ and
integrating over dς ′ which is immediate and equals ς.
The angle φ is between k and k′ vectors. Then we obtain

ρ =
π~

e2mNAkBT

1

k2Fv
2
F

1

ς

×
∫

q4`2(q)kFdφ

(1− e−~ω/kBT )(e~ω/kBT − 1)
. (11)

To accomplish the calculations, all we need is to �nd
kFdφ expressed by the scattering vector q. This can be
done by using the law of cosines in the form

q2 = k′2 + k2 − 2k′k cosφ =⇒ qdq = k2F sinφdφ,

q2 = k′2 + k2 − 2k′k cosφ =⇒ cosφ = 1− q2

2k2F
. (12)

Finally the equation describing the resistivity of an
ideal 2D metallic system is

ρ2D =
~

2e2mNAkBTk4Fv
2
F

×
∫ D

0

q5`2(q)dq√
1−
(
1− q2

2k2F

)2
(1− e−~ω/kBT )(e~ω/kBT −1)

,

(13)

where D is the Debye radius in two dimensions, `(q) =
n/N(εF) where N(εF) � density of electron levels at
the Fermi surface and ω = ω(q). For comparison, below
we write the Bloch�Grüneisen formula for the electrical
resistivity which we mentioned in the introduction

ρ3D =
3π~

4e2mNkBTk4Fv
2
F

×
∫ D

0

q5`2(q)dq(
1− e−~ω/kBT

)
(e~ω/kBT − 1)

. (14)

There is another matter which should be thoroughly
considered. The real phonon dispersion relation, ω(q),
is not linear and the actual form of this dispersion rela-
tion is

ω(q) = ω0 sin
(qa
2

)
, (15)

where ω0 � characteristic frequency, a� the lattice con-
stant.
However, Eq. (15) gives too large values of the sound

velocity at the Brillouin zone boundaries. Therefore we
do not use the real dispersion relation but we replace it
with the one for which the velocity of sound s is expressed
by the formula

s =
kBθ

~D
, (16)

where θ is the Debye temperature. This formula gives
more realistic values for s and suggests the following dis-
persion relation for phonons:

ω(q) =
kBθ

~D
q. (17)
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3. Results

We carried out the calculations of the resistivity in
the range of temperature from T = 0.04θ to T = 1.4θ
(the numerical results of the investigated quantities did
not signi�cantly change for higher temperatures). We
calculated the ratio of the 2D resistivity ρ2D to the 3D
resistivity ρ3D, given by the Bloch�Grüneisen formula in
order to show the in�uence of dimensionality on the re-
sistivity. We used the linear dispersion relation in both
cases. The result is shown in Fig. 1.

Fig. 1. The relative resistivity ρ2D/ρ3D (symbols ex-
plained in the text) vs. reduced temperature T/θ.

To make the ratio dimensionless we need to multiply
2D resistivity by the lattice constant a. In a wide range
of temperatures the resistivity of a monolayer is about
0.75 of that of the bulk sample. It can be explained in
a simple way: the charge carriers in 2D space have less
�nal states to scatter thus the current is less damped.
However, below T = 0.2θ we obtained the unexpected
result: the 2D resistivity rises up and becomes greater
than 3D one below 0.1θ. It can be explained in this
way: for very low temperatures the exponent ~ω/kBT is
large and we can approximate the part of the function
under the integral in (13) and (14) which is dependent
on temperature by exp(−~ω/kBT ). On the other hand,
this factor is equal to exp(−θq/TD). It resembles the
well-known fact that at low temperatures the phonons of
small q's give main contribution to electron scattering.
This contribution is essentially greater in our 2D model
because of the square root expression in the denominator
which tends to zero.

4. Conclusions

We have investigated the in�uence of temperature on
the electrical resistivity of a 2D metallic layer. The elec-
trical resistivity of such system is smaller than the resis-
tivity of a bulk material in a great range of temperatures

and exceeds the bulk resistivity for low temperatures.
Both e�ects can be explained by the fact of low dimen-
sionality of the considered sample. Our model is strictly
two-dimensional and is di�cult for experimental veri�ca-
tion however it can be used for a semi-quantitative anal-
ysis of the samples strongly reduced in one dimension.
Therefore our next goal is to investigate how the resis-
tivity changes with temperature for �lm thickness greater
than one atomic layer.
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