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Magnetic Excitations in Locally Non-Equilibrium Continuum
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On the basis of locally non-equilibrium thermodynamics the equation for dynamics of the magnetic moment
vector is derived. For a magneto disordered continuum the spectrum of locally non-equilibrium �uctuations is
determined. It is shown that the spectrum is composed of electromagnetic-spin branches, which contain energy
gaps and spin-electromagnetic ones which do not. Unstable modes in diamagnets are found. The dispersion relation
and frequency dependence of the damping coe�cient are determined for coupled waves of the magnetic vector
potential and magnetization. It is shown that there exist frequency regions of transmission and non-transmission.
Frequencies of the undamped waves and constant-phase damped waves can be located in these regions.
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1. Introduction

Waves of magnetization in a locally equilibrium di-
electric continuum have been considered in a number
of papers [1]. In this paper coupled waves of the mag-
netic vector potential and magnetization in a locally non-
-equilibrium magneto non-ordered continuum in absence
of external �elds [2] are investigated. This continuum can
be a model for paramagnetic and diamagnetic materials,
spin glasses, nuclear spins, a neutron continuum.
Coupled waves of an electromagnetic (EM) �eld and

magnetization are similar to sound waves in the contin-
uum with spins [3]. Interaction of the vector potential
(impulse) and magnetic moment vector (spin) �elds rep-
resents a real model for the �eld theory.

2. Equation of motion for the magnetic moment

vector in a locally non-equilibrium continuum

Equation of motion for magnetization can be derived
within the frame of non-equilibrium thermodynamics
[4, 5]. According to this theory magnetization obeys the
conservation equation (CE):

M ,t + Rj,j = N , (1)

where (.),t ≡ ∂(.)/∂t and (.),j ≡ ∂(.)/∂xj are the deriva-
tives with respect to time and space, Rj = Rjiei, ei is
the basis vector, Rji is the j-component of the �ow of
Mi-component (surface force moment density), N is the
source of M (volumetric force moment density).
The electromagnetic equations are the CE's with anti-

symmetric tensors of the �ows. On the basis of the equa-
tions for dielectric continuum the EM �eld energy satis-
�es the CE wf

,t + divJ f = σf , where wf = (8π)−1(E2 +

B2)−MB is the energy density, E is the electric �eld,
B = H +4πM is the magnetic induction, H is the mag-
netic �eld, J f = (c/4π)[EH] is the density of the �eld
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energy �ow, c is the light velocity, σf = −P ,tE −M ,tB
is the density of the energy source, P is the electric po-
larization [4].
The internal energy de�ned as di�erence between the

total energy and the EM �eld energy satis�es the CE
u,t+divq = −σf , where u(s, Pi,Mj) is the internal energy
density, s is the entropy density, q is the internal energy
�ow.
On the base of CE's for u and M at constant polar-

ization one can write the CE for entropy as

s,t + J s
j,j = σ, (2)

where J s is the entropy �ow. The entropy production is
the positive-de�nite bilinear form

σ = JnKn ≥ 0, (3)

in which the generalized thermodynamic �ows and ther-
modynamic forces conjugate to them are

J1 = J s, K1 = (1/T ),x,

J2 = N , K2 = B/T,

J3 = Rji, K3 = Bij/T,

J4 = R, K4 = −2V /T, (4)

where T = ∂u/∂s is the temperature, B = B−Be is the
e�ective magnetic induction, Be = ∂u/∂M is the inter-
nal magnetic induction, Rij = Rs

ij is the symmetric part
of the magnetization �ow tensor, Bij is the symmetric
part of the tensor Bi,j , R = −(1/2)eieijkR

a
jk is a vector

conjugated to the antisymmetric part of the magnetiza-
tion �ow tensor Ra

jk = −eijkRi, V = (1/2)rotB is the
vortex of the e�ective magnetic induction.
According to the non-equilibrium thermodynamic

principles generalized �ows and forces are interrelated
due to the constitutive relations [4, 5]. Ignoring space
dispersion the integral constitutive relations can be writ-
ten in linear approximation in the form

Kn(t) =

∫ t

−∞
Inm(t, t′)Jm(t′)dt′, (5)

which allows for continuum memory and causality prin-
ciple. The kinetic coe�cients Inm (which depend on
parameters Q including thermodynamic variables and
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�ows) satisfy symmetry relations

R∧Inmij...(r
∧Q) = Inmi′j′...(Q),

cR∧Inmij...(c
Qr∧Q) = Inmi′j′...(Q),

c′R∧Imnji...(c
′Qr∧Q) = Inmi′j′...(Q),

cc′R∧Imnji...(c
Qc′Qr∧Q) = Inmi′j′...(Q), (6)

where R∧Inmij... ≡ (ri′irj′j...)I
nm
ij...(r

∧Q) are the coe�cients
transformation at simple rotations, r∧ is the rotation
operator, applied to each subscript, ri′i is the rotation
matrix; c = cncm = ±1, c = c, c′, c∧Jm = cmJm is
the relationship that de�nes cm, c∧ = 11′ are the space
and time inversion operators, cm, c'm = 1 for even type
vectors Jm (axial i-vector, J2), cm = −1, c'm = 1 for
electric type vectors (polar i-vector, J3, J4), cm = 1,
c′m = −1 for magnetic type vectors (axial c-vector),
cm = −1, c′m = −1 for magnetoelectric type vectors

(polar c-vector, J1). The numbers cQ and c′
Q
are deter-

mined in the same way as cm and c′m. The generalized
�ows are expressed through the generalized forces simi-
larly to relations (5).
Permutation of subscripts in (6) is due to the causality

principle. For a symmetric relative to 1′ continuum the
third relation of (6) provides the classic symmetric rela-
tion c′Imnji (−M ,−B) = Inmij (M ,B), where c′ = 1, if Jn

and Jm change or do not change the sign simultaneously
under the action of 1′ and c′ = −1, when only one of
the vectors changes its sign [6]. As seen from the second
equation of (6), in a symmetric relative to 1 continuum
the �ow J2 does not connect with other �ows.
Let us consider a highly symmetric (centrosymmetrical

isotropic) continuum at constant temperature. Taking
into account symmetric relations (6) and expanding the
�ows in constitutive relations (5) in series at point t and
keeping two terms of the series, one can write constitu-
tive relations in the form of relaxation equations

τvN ,t + N = νB,

τtRjk,t +Rjk = Pjk, Pjk = P0jk − δjklττvRnn,t,
P0jk = 2η(Bjk − δjkBnn/3) + δjkξBnn,

τvRnn,t +Rnn = 3ξBnn,

τrR, t + R = −2χV , (7)

where τv is the relaxation time of volume force moment,
τt, τl, τv and τr are the relaxation times for the sym-
metric and antisymmetric parts of the surface force mo-
ments (τr, τt and τl determine relaxation of torsional,
shear and longitudinal force moments, respectively), η,
ξ, χ and ν are the coe�cients of shear, volumetric, tor-
sional and internal �magnetic viscosities� (they are pos-
itive due to positive-de�nite entropy production), τv =
(3ξ/2η)(τt + 3lτl) is the relaxation time for the trace of
the force moment matrix, lτ = l[(τl/τv)−1], l = I3312/2I

33
44

is the coe�cient which determines anisotropy of the con-
tinuum.
Equations (1) and (7) describe dynamics of the magne-

tization in linear approximation. Dependence of the co-
e�cients on T , Ei, Mj reduces to nonlinear terms in the

constitutive equations. In particular, dependence of the
linear viscosity coe�cient on magnetization in the �rst
equation of (7) results in the substitution for the volume
force moment νB → g[MB]+(ν11 +(ν12 +ν44)M2)B−
ν44[M [MB]]. Therefore, for a highly symmetric locally
equilibrium (τt, τr, τv → 0) continuum Eq. (1) takes the
form of the standard equation of motion for the mag-
netic moment vector [1], if one leaves the surface force
moments out of consideration (χ, η, ξ → 0).
Making use of (1) and implying constant coe�cients

in (7) the equation of motion for the magnetic moment
vector can be written as

τtM ,tt + M ,t + η∆B = −gradϕB + N e − rotRe, (8)

where ∆ is the Laplace operator, ϕB = ηeBjj + lτRjj
is the e�ective scalar potential of the force moment,
ηe = [(1/3)η + ξ(1 − 3lτ )] is the e�ective magnetic vis-

cosity coe�cient, Rjj = (3ξ/τv)
∫ t
−∞Bjj(t

′) exp((t′ −
t)/τv)dt′ is the component of the potential, N e = N +
τtN ,t is the e�ective volume force moment, N(t) =

(ν/τv)
∫ t
−∞B(t′) exp((t′ − t)/τv)dt′ is the component

of the force moment (the moment at a speci�ed in-
stant is determined by all the prehistory of the induc-
tion), Re = R + τtR,t is the e�ective vector poten-
tial, the curl of which yields the force moment, R(t) =

(−2χ/τr)
∫ t
−∞ V (t′) exp((t′ − t)/τr)dt′ is determined by

the change in the �eld vortex for all past time.
In linear approximation Be = aM and, accordingly,

the internal energy produced by magnetization is um =
(1/2)aM2. Therefore, the energy um should be conceived
as the spin-spin interaction energy (exchange energy) and
the coe�cient a is as the interaction constant [6, 7]. For
a locally equilibrium state (τt, τv → 0) with small inho-
mogeneity of the magnetic induction Eq. (8) describes
di�usion of the magnetization. If the inhomogeneity of
magnetization is also small, then from (8), evidently, the
vector M → B/a with a characteristic time of relax-
ation τm = (aν)−1. For a locally non-equilibrium contin-
uum the parabolic equation of magnetization di�usion is
transformed into a hyperbolic one, allowing for solutions
in the form of transverse and longitudinal waves.
Equations of motion for the vectors of polarization and

electric current density have a form similar to (8).
At constant polarization and in the case of the Lorentz

gauge the magnetic vector potential (B = rotA) obeys
the equation

c−2A,tt −∆A = 4πrotM . (9)

The �elds A(t, r) and M(t, r) are interrelated through
the �eld vortexes rotM and rotA, respectively.

3. Coupled waves of the vector potential

and magnetization

Let us consider harmonic oscillations M ,A ∝
exp(− iωt), where ω = ω′+ iω′′ is the complex frequency,
ω′ and ω′′ are the real and imaginary parts of ω. In this
case at constant coe�cients of the �magnetic viscosity�
Eqs. (8) and (9) take the form
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−∆A− k20A = 4πrotM ,

cl grad divM −∆M − k2mM = k2c rotA, (10)

where k20 = (ω/c)2 is the asymptotic wave number,
k2m = c1/c0 and k2c = c2/c0 are the characteristic wave
numbers, cl = 1− aηl/c0, ηl = (4/3)η+ ξ(1− 3lτω) is the
e�ective �magnetic viscosity�, lτω = lτ [− iωτv/(1− iωτv)]
is the coe�cient which determines the viscosity frequency
dependence, c1 = ω2τt + iω − aνζv, c2 = (ω/c)2(η +
χζm)+νζv, c0 = aπ(η+χζm) are the coupling coe�cients
for the continuum and �eld, ζm = (1− iωτt)/(1− iωτr)
and ζv = (1 − iωτt)/(1 − iωτv) are the functions which
determine the frequency dependence of the coe�cients,
aπ = a− 4π is the reciprocal quasi-static susceptibility.
Physical meaning of the coe�cients results from the

relation M = (κ/µ)B, where κ is the magnetic suscep-
tibility, µ = 1 + 4πκ is the magnetic permeability [6]. As
seen from the second formula of (10) for homogeneous
magnetization the ratio κ/µ = −c2/c1 and, consequently,
κ = −((c1/c2) + 4π)−1. In the limit ω → 0 the quasi-
-static susceptibility κ′0 = 1/aπ, for a paramagnet κ′0 > 0
and for a diamagnets κ′0 < 0. In the limit ω → ∞ sus-
ceptibility κ′∞ → −γ0/(1 + 4πγ0), where γ0 = γη + γχ,
γη = v2η/c

2 and γχ = v2χ/c
2 are the ratios of the rep-

resentative velocities and velocity of light, v2η = η/τt
and v2χ = χ/τr are the velocities of the magnetization
waves caused by shear and torsional �magnetic viscosi-
ties�. If the low-frequency quasi-static susceptibility does
not depend on non-equilibrium parameters of the con-
tinuum, the high-frequency asymptotic susceptibility is
determined by the coe�cients of the magnetic viscosity
and relaxation times of the surface force moments.
Let elementary excitations be traveling plane waves of

the form A,M ∝ exp(ikx − iωt), where k is the wave
vector. It follows from (10) that the wave components
are related through

(k2 − k20)A = i4π[kM ],

(k2 − k2m)M − clk(kM) = ik2c [kA]. (11)

The uncoupled longitudinal magnetization waves are de-
scribed by the dispersion relation k2 = k2m/(1− cl). The
transverse waves are coupled waves of vector potential
and magnetization with the dispersion relation

(q2 − Ω2)(q2 − q2m)− 4πq2cq
2 = 0, (12)

where q2 ≡ q2 = k2(cτm)2, q2m,c ≡ k2m,c(cτm)2 are nor-
malized wave numbers, Ω = ωτm is the normalized fre-
quency. Because of the isotropy of the continuum relation
(12) does not depend on the direction of wave propaga-
tion. When 4πq2c → 0 the dispersion relation for cou-
pled waves decomposes into dispersion relations for un-
coupled waves of magnetization �eld q21 = q2m and EM
�eld q22 = Ω2.

4. Spectrum of locally non-equilibrium

�uctuations

Let us consider �uctuations of magnetization (wave
packets) consisting of plane waves with real wave num-
bers and complex frequencies.

Equation (12) can be written as

a06Ω
6 + a04Ω

4 + a02Ω
2 + a00

+ iΩ(a05Ω
4 + a03Ω

2 + a01) = 0, (13)

where a06 = θvθ1, a05 = θvθ0 + θ1, a04 = a040 + a041q
2,

a040 = −θv− θ0− θ1, a041 = −a06(1 + aγ0), a03 = a030 +
a031q

2, a030 = −1 − θ0, a031 = −a05 − aγ01, a02 = 1 +
a021q

2+a022q
4, a021 = θv+θ0+αθ1+aγ1, a022 = a06αaγ0,

a01 = a011q
2 + a012q

4, a011 = 1 + αθ0, a012 = αaγ01,
a00 = a001q

2 + a002q
4, a001 = −α, a002 = −αaγ1 are

coe�cients, θv = τv/τm, θt = τt/τm, θr = τr/τm are
normalized relaxation times, θ0 = θt + θr, θ1 = θtθr are
the characteristic times of relaxation, γ1 = γηθt + γχθr,
γ01 = γ0θ1 + γ1θv are the characteristic velocity ratios.

The real part of (13) is

a3Ω
′6 + a2Ω

′4 + a1Ω
′2 + a0 = 0, (14)

where a3 = a06, a2 = a04 − 5a05Ω
′′ −15a06Ω

′′2, a1 =
a02 − 3a03Ω

′′ −6a04Ω
′′2 + 10a05Ω

′′3 + 15a06Ω
′′4, a0 =

a00−a01Ω ′′−a02Ω ′′2+a03Ω
′′3+a04Ω

′′4−a05Ω ′′5−a06Ω ′′6
are coe�cients.

The imaginary part of (13) is

b2Ω
′4 + b1Ω

′2 + b0 = 0, (15)

where b2 = a05+6a06Ω
′′, b1 = a03+4a04Ω

′′ −10a05Ω
′′2−

20a06Ω
′′3, b0 = a01 + 2a02Ω

′′ −3a03Ω
′′2 − 4a04Ω

′′3 +
5a05Ω

′′4 + 6a06Ω
′′5 are coe�cients.

If b2 6= 0, Eq. (15) provides the dispersion relation for
spin-electromagnetic (SE) and electromagnetic-spin (ES)
modes in an implicit form

Ω ′21,2 = −(b1/2b2)±
[
(b1/2b2)2 − (b0/b2)

]1/2
. (16)

Substitution of (16) into (14) gives the equation for the
imaginary part of the frequency in an implicit form

i0I0 + i1I1 + a23I2 = 0, (17)

where i0 = a0b1−a1b0, I0 = b2(2a3b0+a2b1−a1b2)−a3b21,
i1 = a0b2−a2b0, I1 = b2i1 +a3b0b1, I2 = b30 are functions
of the coe�cients. Inserting the coe�cients from (14)
and (15) in (17) one can write it in the explicit form

n=15∑
n=0

enΩ
′′n = 0, (18)

where en =
∑n=m+l
m,l i0mI0l +

∑n=p+r
p,r i1pIlr + a206I2n

are coe�cients which depend on q2, 0 ≤ m ≤ 9,
0 ≤ l ≤ 6, 0 ≤ p ≤ 7, 0 ≤ r ≤ 8 are integers,
i00 = a03a00 − a02a01, i01 = 4a04a00 + 2a03a01 − 2a202,
i02 = −10a05a00 + 2a04a01 + 8a03a02, i03 = −20a06a00 +
12a04a02 − 8a203, i04 = 5a06a01 − 15a05a02 − 25a04a03,
i05 = −16a06a02 + 34a05a03 − 20a204, i06 = 42a06a03 +
56a05a04, i07 = 72a06a04 − 40a205, i08 = −105a06a05,
i09 = −70a206 are the coe�cients at powers Ω ′′ of the
function i0, I00 = a06(2a05a01 − a203) + a05(a04a03 −
a05a02), I01 = a06(12a06a01 − 8a05a02 − 2a04a03) +
a05(4a204 − 2a05a03), I02 = a06(−12a06a02 + 5a05a03 +
8a204) − 24a205a04, I03 = a06(22a06a03 − 116a05a04) +
40a305, I04 = a06(325a205 − 152a06a04), I05 = 932a206a05,
I06 = 932a306 are the coe�cients at powers Ω ′′ of the
function I0, i10 = a05a00 − a04a01, i11 = 6a06a00 +
4a05a01 − 2a04a02, i12 = 9a06a01 + 9a05a02 + 3a04a03,
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i13 = 24a06a02 − 14a05a03 + 4a204, i14 = −39a06a03 −
24a05a04, i15 = −60a06a04 + 24a205, i16 = 98a06a05,
i17 = 84a206 are the coe�cients at powers Ω ′′ of the func-
tion i1, I10 = a06a03a01 + a05(a05a00 − a04a01), I11 =
a06(12a05a00−2a04a01+2a03a02)+a05(4a05a01−2a04a02),
I12 = a06(36a06a00 + 23a05a01 − 4a04a02 − 3a203) +
a05(9a05a02 + 3a04a03), I13 = a06(34a06a01 + 58a05a02 +
2a04a03) + a05(−14a05a03 + 4a204), I14 = a06(104a06a02−
88a05a03 + 8a204) − 24a205a04, I15 = −a06(−168a06a03 −
144a05a04) + 24a305, I16 = a06(−256a06a04 + 192a205),
I17 = 512a206a05, I18 = 384a306 are the coe�cients at
powers Ω ′′ of the function I1, I20 = a301, I21 = 6a201a02,
I22 = a01(−9a01a03 + 12a202), I23 = −12a01(a01a04 +
3a02a03) + 8a302, I24 = a01(15a01a05 − 48a02a04 +
27a203) − 36a202a03, I25 = a01(18a01a06 + 60a02a05 +
72a03a04)+a02(−48a02a04+54a203), I26 = a01(72a02a06−
90a03a05 + 48a204) + a02(60a02a05 + 144a03a04) − 27a303,
I27 = a01(−108a03a06 − 120a04a05) + a02(72a02a06 −
180a03a05 + 96a204)− 108a203a04, I28 = a01(−144a04a06 +
75a205) + a02(−216a03a06− 240a04a05) + a03144(a03a05−
a204), I29 = a01180a05a06 + a02(−288a04a06 + 150a205) +
a03(162a03a06 + 360a04a05) − 64a304, I210 = a01108a206 +
360a02a05a06 + a03(432a04a06 − 225a205) + 240a204a05,
I211 = 216a02a

2
06 − 540a03a05a06 + a04(288a04a06 −

300a205), I212 = −324a03a
2
06 − 720a04a05a06 + 125a305,

I213 = −432a04a
2
06 + 450a205a06, I214 = 540a05a

2
06, I215 =

216a306 are the coe�cients at powers Ω ′′ of the function
I2. When θv = 0 the �fteenth-order Eq. (18) reduces to
the tenth-order one.

Generally (18) can have up to �fteenth solutions
Ω ′′(q2). Each solution provides up to two spectral
branches (16) (dissipation splits the spectrum). The do-
main of existence of excitations is determined by the con-
dition b21−4b0b2 ≥ 0, and it should be noted that because
of positive left side of (16), when b0b2 > 0 there are
two solutions for b1b2 < 0 and there are no solutions for
b1b2 > 0; when b0b2 < 0 there is one solution. Hence, in
a locally non-equilibrium continuum propagation of the
excitations will be complex. As (18) has no analytical
solution, let us begin with a qualitative analysis of the
equation.

Along with null solution Ω ′′00 = 0 at the point q = 0
there are also nonzero solutions, satisfying the equa-

tion
∑n=15
n=1 en0Ω

′′
0
n−1

= 0, where en0 = en(q = 0).
The frequencies of homogeneous excitations are deter-
mined from (15) at q = 0 and Ω ′′ = Ω ′′0j . Particularly,
frequencies of homogeneous continuous oscillations are
Ω ′20 = [(1 + θ0)/(θvθ0 + θ1)]1/2 and Ω ′10 = 0. ES branch
has an energy gap Ω ′20, which is determined by relaxation
times. The gap results from dynamic interaction of elec-
tromagnetic and spin subsystems. Slow magnetization
produces an e�ective restoring force for rapid vector po-
tential, setting a �nite oscillation frequency. SE branch
has no gap. The �null� frequency oscillations are due to
translation invariance of the continuum (absence of the
restoring force). However in this case nonlinear e�ects
are essential [8]. As a result the frequency will depend

on the amplitude and the oscillations of �null� frequency
will have �null� amplitude.

In the high wave number region (q2 → ∞) at
the restricted values of Ω ′′ in (18) the basic coe�-
cients are q12 and Eq. (18) reduces to the third de-

gree equation
∑n=3
n=0 en6Ω

′′
∞
n

= 0 with constant coe�-
cients. In the low q-region the number of solutions can
be greater than that in high q-region. In the case of
constant damping the linear dispersion relation results
from (15) as Ω ′1,2 = v1,2q, where v1,2 = [−(b11/2b20) ±
((b11/2b20)2 − (b02/b20))1/2]1/2 are the asymptotic ve-
locities, b20 = a05 + 6a06Ω

′′
∞, b11 = a031 + 4a041Ω

′′
∞,

b02 = a012 + 2a022Ω
′′
∞. If |4b20b02/b211| � 1, then

v1 = (−b02/b11)1/2, v2 = (−b11/b20)1/2. Each solu-
tion Ω ′′∞ results in up to two branches Ω ′(q). For low
dumping Ω ′′∞ � (a05/6a06), (γ01/4a06γ0) the coe�cients
b20 = a05, b11 = −a05− aγ01, b02 = αaγ01 do not depend
on Ω ′′∞ and the branches are joined.

There are critical wave numbers qc satisfying the equa-
tion Ω ′′(q2c ) = 0. At the point qc the imaginary part
of Ω ′′ changes its sign. Amplitudes of the excitations
with Ω ′′ < 0 and Ω ′′ > 0 decrease or increase with time,
respectively. Wave numbers qc are the points of the loss
of stability for the zero �eld state. Nonzero solutions

qc satisfy the equation
∑n=6
n=1 e0nq

2(n−1)
c = 0. In para-

magnets this equation has no solutions as all coe�cients
have the same sign. In diamagnets there are at least two
solutions q2c as e01, e06 < 0 regardless of the sign of α.
At the points qc, along with the zero solution, there are

solutions satisfying the equation
∑n=15
n=1 encΩ

′′
c
n−1

= 0,
where enc = en(q2c ).

Let us consider the case of small dumping. The
quadratic approximation of (18) gives

Ω ′′0,1(q2) = −(e1/2e2)±
[
(e1/2e2)2 − (e0/e2)

]1/2
, (19)

where e21 − 4e0e2 ≥ 0. If e0e2 < 0 then Ω ′′0 > 0 and
Ω ′′1 < 0, if e0e2 > 0 then Ω ′′0,1 > 0 for e1e2 < 0
and Ω ′′0,1 < 0 for e1e2 > 0. At the points qc the coef-
�cient e0 = 0 and so Ω ′′0 (qc) = 0, Ω ′′1 (qc) = −e1/e2.
In the high wave number region (19) be-

comes Ω ′′0,1∞ = (e16/2e26)[−1 ± (1 − (4e26e06/e
2
16))1/2],

where e26 = −(2a206αaγ0)2a05[(1 + aγ0)2 − 4αaγ0], e16 =
2(a06αa)2(j01γ0γ161 +a06γ01γ162), γ161 = a06(α− 1)γ0 +
(1 + 4α)γ01, γ162 = γ01(1 + aγ0)2 − 2αaγ0(γ01 + a05γ0),
e06 = (α− 1)α2aγ01j

2
01. For 4e26e06/e

2
16 � 1 asymptotic

attenuations Ω ′′0∞ = −e06/e16 and Ω ′′1∞ = −e16/e26 do
not depend on the wave number. Substitution of the
constants Ω ′′0,1∞ into (15) gives the linear dispersion
relation

Ω ′1,2 = v1,2∞q, (20)

where v1,2∞ = [−(b1∞/2b2∞) ± ((b1∞/2b2∞)2 −
(b0∞/b2∞))1/2]1/2 are the asymptotic velocities
of SE and ES modes, b2∞ = a05 + 6a06Ω

′′
0,1∞,

b1∞ = a031 + 4a041Ω
′′
0,1∞, b0∞ = −a012 −

2a022Ω
′′
0,1∞. For low dumping |Ω ′′0,1∞| � a05/6a06,

(a05 + aγ01)/4a06(1 + aγ0), γ01/2a06γ0 the veloci-
ties v2,1∞ = [(1/2)(1 + u)(1± (1− 4αu/(1 + u)2)1/2]1/2,
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where u = aγ01/a05. There are two branches in para-
magnets (α > 0) and one ES branch in diamagnets
(α < 0). For 4αu/(1 + u)2 � 1 SE and ES wave veloc-
ities are v1∞ = [αu/(1 + u)]1/2 and v2∞ = (1 + u)1/2,
respectively.

In the small wave number region (19) gives Ω ′′0 =
−e0/e1 and Ω ′′1 = −e1/e2 for 4e0e2/e

2
1 � 1. The

dispersion relations for SE mode Ω ′1
2

= −b0/b1 and

ES mode Ω ′2
2

= −b1/b2 result from (16) on condi-
tion 4b0b2/b

2
1 � 1, where b0 = a01 + 2a02Ω

′′
0,1, b1 =

a03 + 4a04Ω
′′
0,1, b2 = a05 + 6a06Ω

′′
0,1. In the following

the analysis is limited by holding only terms of the order
of q4.

Dumping of the dominant mode is determined by the
function Ω ′′0 = Ω ′′01q

2 + Ω ′′02q
4, where Ω ′′01 = −e01/e10,

Ω ′′02 = −(e10e02 − e01e11)/e210 are the coe�cients of the
function, e01 = (α− 1)I000, e02 = (α− 1)[I001− (αθ0θ1−
aγ1)I000 − θ1I101 + θv0(θ0j00 − a205)] and e10 = −2I000,
e11 = (α − 1)I010 − 2I001 + i011I000 + 2j00[i101 + θ+(1 +
αθ0)] − 2αθ+a

2
05 are the coe�cients at wave numbers in

e0 and e1, I000 = (1+θ0)j00−a205 > 0, I001 = a05[a06(1+
αθ0) + (1−α)θ21 − a05aγ1] + aγ01j00 + (1 + θ0)j01, I101 =
(1+αθ0)j00−αa205, I010 = −2a05(4a06+j20)+2θ+j00 are
the coe�cients at wave numbers in I00, I10 and I01, θ+ =
θv+θ0+θ1, j00 = θ0(θ2v+a05)+θ21, j20 = −a05(1+θ0)−θ2+,
i011 = 4(α−1)(θv+θ0)−2(1+θ0)(1+αθ0)−4aγ1 are the
components of the coe�cients. When q → 0 the dumping
Ω ′′0 = −(2π/a)q2 does not depend on non-equilibrium
parameters and Ω ′′0 → 0 as the wave number squared.
The point of the loss of stability of the dominant mode
q2c = −Ω ′′01/Ω ′′02 exists if Ω ′′02 > 0.

The dispersion relation for the dominant SE mode is

Ω ′210 = v210q
2 + v411q

4, (21)

where v10 = (α)1/2 is the velocity in the locally equi-
librium continuum, v411 = (1 + θ0)−1[−α(a05 + (1 −
α)(θv − θ1)) + (1 − α)(1 + θ0 + (1 − α)(Ij/I000))] is
the coe�cient determining dispersion of the velocity,
Ij = j00θ+ + 2a05[a05(1 + θ0) + θ2+ − 4a06]. In the region
q2 � |v210/v411| the dispersion relation is a linear function
Ω ′1 = v10q. Thus for q → 0 and q → ∞ the dominant
SE mode exists in paramagnets and does not exist in dia-
magnets. Nevertheless in diamagnets the dominant mode
can exist for wave numbers, lying in narrow intervals due
to positive v411.

The dispersion relation for the dominant ES mode is

Ω ′220 = Ω ′2200 + v221q
2 + v422q

4, (22)

where Ω ′2200 = (1 + θ0)/a05 is the energy gap, v221 =
1+u+[(1−α)/a205](a05θ+−3j00) is square of the charac-
teristic velocity, v422 = (1−α)a06[3v221 + (Ω ′′020/a06)(θ+−
(3j00/a05)) + (1 − α)(3/a205) − 2(1 + aγ0)] is the co-
e�cient which determines velocity dispersion, Ω ′′020 =
2αθv − 1 − aγ1 + (α − 1)[θv + 2θ0 + (Ij/I000)]. Thus
the dominant ES mode exists in paramagnets and dia-
magnets for all wave numbers.

Dumping of the �rst mode is determined by the func-
tion Ω ′′1 = Ω ′′10 + Ω ′′11q

2 + Ω ′′12q
4, where Ω ′′10 = −e10/e20,

Ω ′′11 = (e10e21 − e11e20)/e220, Ω
′′
12 = (e10e22 − e12e20 −

e21e20Ω
′′
11)/e220 are the coe�cients of the function, e1n

and e2n are the coe�cients at q2n in e1 and e2. For q → 0
dumping is Ω ′′1 → Ω ′′10 = −1/[4(1+θ0)+2a05(a05(1+θ0)+
θ2+ − 4a06)I−1000], for the �rst mode the point of the sta-

bility loss is q2c1,2 = [−Ω ′′11 ± (Ω ′′11
2 − 4Ω ′′10Ω

′′
12)1/2]/2Ω ′′12.

There are two values of q2c1,2 for Ω ′′12, Ω
′′
11 < 0 and one

value of q2c1 for Ω ′′12 > 0.
The dispersion relation for the �rst SE mode is deter-

mined by the function Ω ′11 = (Ω ′2110 + v211q
2 + v412q

4)1/2,
where Ω ′2110 = −b00/b10, v211 = (b00b11 − b01b10)/b102,
v411 = (b00b12−b02b10−b01b10v211)/b102 are the coe�cients
of the function, b00 = 2Ω ′′10, b01 = 1 + αθ0 + 2(θs + aγ1),
b02 = αaγ1 + 2[a06αaγ0Ω

′′
10 + (θs + aγ1)Ω ′′11 + Ω ′′12],

b10 = −(1 + θ0)− 4θ+Ω
′′
10, b11 = −(a06 +aγ01)− [a06(1 +

aγ0)Ω ′′10 + θ+Ω
′′
11], b12 = −4[a06(1 + aγ0) Ω ′′11 + θ+Ω

′′
12],

b20 = a05 + 6a06Ω
′′
10, b21 = 6a06Ω

′′
11, b22 = 6a06Ω

′′
12 are

components of the coe�cients, θs = θv + θ0 + αθ1. For
1 + θ0 > 4θ+Ω

′′
10 the dispersion relation can have an im-

pulse gap as Ω ′2110 < 0.
The dispersion relation for the �rst ES mode is Ω ′21 =

(Ω ′2210 + v221q
2 + v422q

4)1/2, where Ω ′2210 = −b10/b20 is the
energy gap, v221 = (b10b21 − b11b20)/b220, v

4
22 = (b10b22 −

b12b20 − b21b20v221)/b210 are the characteristic velocities.

Fig. 1. Dependence of imaginary part of the frequency
on wave number in paramagnet.

Let us consider numerical solutions. Figure 1 shows
Ω ′′(q) according to (17) for parameters θv = 4, θt = 2,
θr = 4, γη = 0.05, γχ = 0.07, a = 10π. At q → 0
the imaginary parts of the dominant and the �rst and
second branches tend to zero and �nite quantities, re-
spectively. At q → ∞ all branches tend to constants.
Comparison of the exact numerical and quadratic ap-
proximation relations shows quantitative and qualitative
agreement between the relations for the dominant and
the �rst branches, respectively.
The imaginary part of (15) (a �fth order equation with

regard to Ω ′′) being expressed through special functions
as Ω ′′(q2) and inserted in (14) gives the dispersion re-
lation Ω ′2(q2). Figure 2 shows the relations Ω ′(q) in
quadratic in Ω ′′ approximation for the same parameters
as in Fig. 1. The ES branches have an energy gap and
exhibit linear relation in the high wave number region.
The dominant SE mode exists for all q's. The �rst SE
mode has an impulse gap. The second SE mode exists
for a small interval of wave numbers.
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Fig. 2. Dependence of real part of the frequency on
wave number in paramagnet.

Fig. 3. Dependence of imaginary part of the frequency
on wave number in diamagnets.

Figure 3 shows the relation Ω ′′(q) for a = π while other
parameters are as in the preceding �gures. It can be seen
that there are two unstable branches (Ω ′′ > 0). The de-
pendence of the critical wave numbers on spin-spin inter-
action constant is shown in Fig. 4. In the region a > 4π
the base state is stable. In the region a < 4π there are
two values of qc, which uniformly increase when a→ 4π.
The unstable region is restricted by space dispersion. The
amplitude of excitations is restricted by nonlinear e�ects.
Consequently, in diamagnets one can get continuous exci-
tations which have zero total momentum and moment of
momentum in accordance with the conservation laws. In
the case a < 0 there is one unstable branch in low wave
number interval starting from q = 0 (Ω ′′0 = 2πq2/|a|).
Therefore the stable state is a ferromagnetic one.

Fig. 4. Dependence of critical wave numbers on spin-
-spin interaction constant.

The spectrum of the locally equilibrium excitations has
one dumping mode without any energy gap.

5. Wave propagation in locally non-equilibrium

continuum

Let us consider wave excitation by an external source
at the boundary of the continuum. In this case the fre-
quency is real.
On the basis of (12) one can write squares of wave

numbers of SE (n = 1) and ES (n = 2) branches as

q2n =
[
fΩ ± (f2Ωm)1/2

]
/2f0, (23)

where f2Ωm = f2Ω − 4Ω2fm0, fm0 = fmf0, fm = a06Ω
4 +

a040Ω
2 + 1 + iΩ(a05Ω

2 + a030), f0 = a022Ω
2 + a002 +

iΩa012, fΩ = a041Ω
4+a021Ω

2+a001+ iΩ(a031Ω
2+a011)

are the functions of frequency.
Separating the real and imaginary parts of the above

functions one can write q2n = (F ′n + iF ′′n )/2(f ′0 +
if ′′0 ), where F ′1,2 = f ′Ω ± ((f2Ωm)1/2)′ and F ′′1,2 =

f ′′Ω ± ((f2Ωm)1/2)′′ are the real and imaginary parts,

((f2Ωm)1/2)′,′′ = 2−1/2[(|f2Ωm|2)1/2±f2Ωm′]1/2 are the real
and imaginary parts of the root of the function f2Ωm,
|f2Ωm|2 = (f2Ωm

′)2 +(f2Ωm
′′)2, f2Ωm

′ = f ′2Ω −f ′′2Ω −4Ω2f ′m0

and f2Ωm
′′ = 2f ′Ωf

′′
Ω−4Ω2f ′′m0 is the square of the module,

real and imaginary parts of the radicand, f ′m0 = f ′mf
′
0 −

f ′′mf
′′
0 and f ′′m0 = f ′mf

′′
0 + f ′′mf

′
0 are the real and imagi-

nary parts of fm0. Hence q2n = q2n
′ + iq2n

′′, where q2n
′ =

(F ′nf
′
0 + F ′′n f

′′
0 )/2|f0|2 and q2n

′′ = (F ′′n f
′
0 − F ′nf ′′0 )/2|f0|2

are the real and imaginary parts of the squares of wave
numbers, |f0|2 = f ′20 + f ′′20 .
As a result relations determining dispersion and dump-

ing for SE and ES modes take a form

q′,n
′′ = 2−1/2

{[
(q2n
′)2 + (q2n

′′)2
]1/2 ± q2n′}1/2. (24)

Relations (24) contain a discrete set of characteris-
tic frequencies Ωl1, Ωl2, which satisfy the equations
q21
′(Ωl1) = 0, q22

′(Ωl2) = 0, and frequencies Ωc1, Ωc2,
which satisfy the equations q21

′′(Ωc1) = 0, q22
′′(Ωc2) = 0,

respectively. At frequencies Ωl1, Ωl2 the real and imag-
inary parts of the wave numbers are ql1 = q′1 = q′′1 =
(1/2)|q21 ′′(Ωl1)|1/2, ql2 = q′2 = q′′2 = (1/2)|q22 ′′(Ωl2)|1/2,
respectively. The boundary frequencies Ωl1, Ωl2 separate
the regions of transmission and non-transmission, where
q′n > q′′n and q′n < q′′n, respectively. At frequencies Ωc1

and Ωc2 the imaginary part of wave numbers q′′1 (Ωc1) = 0
and q′′2 (Ωc2) = 0 in the case q21

′′(Ωc1) > 0 and q22
′′(Ωc2) >

0. Waves of such frequencies (transparency frequen-
cies) propagate at constant amplitude with wave num-
bers q′c1 = (q21

′(Ωc1))1/2 and q′c2 = (q22
′(Ωc2))1/2, respec-

tively. In the case q21
′(Ωc1) < 0 and q22

′(Ωc2) < 0 the real
parts of wave numbers q′1(Ωc1) = 0 and q′2(Ωc2) = 0. The
waves of the frequencies Ωc1 and Ωc2 (non-transparency
frequencies) do not penetrate into the continuum. These
waves damp with a constant phase within the character-
istic distances |q21 ′(Ωc1)|−1/2 and |q22 ′(Ωc2)|−1/2, and in

the dumping region there is no energy �ow 〈J f〉.
The transparency e�ect can be interpreted in the fol-

lowing way. EM �eld induces locally non-equilibrium
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magnetization during a time smaller than relaxation time
of the magnetization. The alternating magnetization
causes radiation of EM waves in phase with EM �eld. As
a result the �eld energy is conserved. This e�ect is similar
to the self-induced transparency e�ect in optics, when a
short pulse of coherent light (with duration shorter than
relaxation time of the polarization) �rst excites atoms
(transferring energy to them) and then stimulates atoms
to radiate coherently (receiving the energy back). In the
case of non-transparency the non-equilibrium magnetiza-
tion radiates EM waves in antiphase to inducing oscilla-
tions of the �eld causing changes of the magnetization.

Fig. 5. Dependence of boundary frequencies and
transparency (non-transparency) frequencies for SE
(1′ and 1′′), ES (2′ and 2′′) branches on spin-spin in-
teraction constant.

The results of numerical solutions of equations
q′n(Ωln) = 0 and q′′n(Ωcn) = 0 are presented in Fig. 5 for
parameters θv = 4, θt = 2, θr = 4, γη = 0.05, γχ = 0.07
in the interval 0.01π ≤ a ≤ 10π. In diamagnets (a < 4π)
the SE branch has the non-transparency frequency across
the whole region, ES branch has the boundary frequency
and non-transparency frequency over nearly the �rst half
of the region and the boundary frequency and trans-
parency frequency over the second half of the region.
In paramagnets (a > 4π) the SE branch has a non-
-transparency frequency, the boundary frequency and
two transparency frequencies in narrow region about 4π,
ES branch has three frequencies. Beyond the mentioned
region the SE branch has the boundary frequency and
transparency frequency, ES branch has only the bound-
ary frequency.
In general the analysis of relation (24) is a very com-

plex problem. Let us consider some speci�c cases.
In the frequency region, where the �rst condition

(q2n
′)2 � (q2n

′′)2 is ful�lled, and particularly in the vicin-
ity of Ωcn, the dispersion and dumping for SE and ES
modes are determined by

q′,n
′′ = 2−1/2|q2n′|1/2

[
1± sgn(q2n

′)

+ (1/2)(q2n
′′/q2n

′)2
]1/2

. (25)

The form of this relation depends on the sign of q2n
′.

In the case q2n
′ > 0 the real part is q′n = (q2n

′)1/2 and
the imaginary part is q′′n = |q2n′′|/2(q2n

′)1/2. In the case
q2n
′ < 0 the real part is qn

′ = |q2n′′|/2(−q2n′)1/2 and the
imaginary part is q′′n = (−q2n′)1/2. When q2n

′ changes its

sign the expressions determining the real and imaginary
parts of the wave numbers change places. In this approx-
imation in the vicinity of Ωcn in the �rst case the imagi-
nary part and in the second case the real part are propor-
tional to the deviation module of the wave frequency from
frequencies of transparency or non-transparency: q′′,n

′ =
q′′Ωcn|Ω−Ωcn|, where q′′Ωcn = (|(∂q2n′′/∂Ω)|/2|q2n′|1/2)|Ωcn
is calculated at the points Ωcn.

In the frequency region, where the second condition
(q2′n )2 � (q2n

′′)2 is ful�lled, and particularly, in the vicin-
ity of Ωln, the dispersion and dumping for SE and ES
modes are determined by the relations

q′,n
′′ = 2−1/2|q2n′′|1/2

[
1± (q2n

′/2|q2n′′|)
]
. (26)

In the neighborhood of Ωln in linear approximation
the real and imaginary parts are determined by q′,

′′

n −
qln = (1/4)(q′′Ωln ± q′Ωln)(Ω − Ωln), where qln =
q′n(Ωln) = q′′n(Ωln) are the boundary frequency wave
numbers, q′′Ωln = (∂q2n

′′/∂Ω)|Ωln/qln and q′Ωln =
(∂q2n

′/∂Ω)|Ωln/qln are determined by the derivatives at
the points Ωln.

For the both high and low frequency regions (f2Ωm
′)2 �

(f2Ωm
′′)2 as f2Ωm

′ is a polynomial of the eighth degree with
a term of zero degree and f2Ωm

′′ is a polynomial of the
seventh degree without a term of zero degree.

In the high frequency region for maximum degrees
of Ω one can write q2n

′ = Ω2/v2n, where v2n =

2αaγ0/[(1 + aγ0) ± f ′
1/2
∞ ]1/2 is the squared velocity,

f ′∞ = (1 + aγ0)2 − 4αaγ0 and q2n
′′ = Ωρn, where ρ1,2 =

[γ2θv±(γ0|f ′′∞|(f ′∞)−1/2−γ01(f ′∞)1/2)]/2αaγ20θvθ1, f
′′
∞ =

aγ01(1 − 2α + aγ0) + (θvθ0 + θ1)(1 + (1 − 2α)aγ0). For
Ω2 � v4nρ

2
n the �rst condition is ful�lled. For para-

magnets for SE and ES waves and for diamagnets for
ES waves q2n

′ is positive. On the basis of (25) dispersion
of these waves is described by a linear function

q′n = Ω/vn, (27)

where vn = |v2n|1/2 are the asymptotic velocities, for (1+
aγ0)2 � |4αaγ0| the velocities v1 = [αaγ0/(1 + aγ0)]1/2

and v2 = (1 + aγ0)1/2. When γ0 → 0 the velocity of SE
wave v1 → 0 and the velocity of ES wave v2 → 1. Dump-
ing of these waves is described by relations q′′n = vn|ρn|/2
bearing no dependence on frequency. The ratio of imag-
inary and real parts decreases with increase of frequency
as Ω−1. For diamagnets for SE waves q2n

′ is negative
and, hence, the expressions for real and imaginary parts
of such waves exchange: q′n = vn|ρn|/2 and q′′n = Ω/vn.
High-frequency SE waves do not propagate in diamagnets
in contrast to ES waves.

Taking into account the terms of the order of Ω2 one
can write q2n

′ = (Ω2 − Ω2
0n)/v20n and q2n

′′ = Ωρ0n for the
low frequency region, where Ω2

0n = v20n(1±|α|/α)/2aγ1 is
the characteristic frequency, v20n = 2αaγ21/gn is the char-
acteristic velocity squared, gn = gn0 + gn1 + gn2, gn0 =
(θvθ1γ0 + θvγγ1)(α ± |α|), θvγ = θ2v + (θ1γ0/γ1)2, gn1 =
γ01(−a011±|a011|), gn2 = γ1(θs+aγ1±|α|(−f2Ωm1

′/2α2)),
f2Ωm1

′ = 2α(aγ1 − θs) − a2011, θs = θv + θ0 + αθ1, ρ0n =
−[γ1(−a011 ± |a011|) + γ01(α ± |α|)]/2αaγ21 . For param-
agnetics and SE waves q21

′ = (Ω2 − Ω2
01)/v201 and q21

′′ =
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−Ωγ01/aγ21 , where Ω2
01 = v201/aγ1, v

2
01 = 2αγ21/(g10 +

g12), g10 = 2α(θvθ1γ0 + θvγγ1), g12 = 2θs + a2011/2α, and
for ES waves q22

′ = Ω2/v202 and q
2
2
′′ = Ωa011/αaγ1, where

v202 = 2αγ21/(g21 + g22), g21 = −2γ01a011, g22 = 2aγ1 −
a2011/2α. For diamagnets and SE waves q21

′ = Ω2/v201 and
q21
′′ = Ωa011/αaγ1 for a011 < 0, q21

′′ = 0 for a011 > 0,
where v201 = 2αγ21/(g11 + g12), g11 = 0 for a011 < 0,
g11 = −2γ01a011 for a011 > 0, g12 = 2aγ1 − a2011/2α, and
for ES waves q22

′ = (Ω2−Ω2
s2)/v202 and q

2
2
′′ = −Ωγ01/aγ21

for a011 < 0, q22
′′ = −Ω(αγ01+fΩ1γ1)/αaγ21 for a011 > 0,

where Ω2
02 = v202/aγ1, v

2
02 = 2αγ21/g2, g2 = g20+g21+g22,

g20 = 2(θvθ1γ0 + θvγγ1), g21 = −2γ01a011 for a011 < 0,
g21 = 0 for a011 > 0, g22 = 2θs + a2011/2α.

Let us consider SE waves in paramagnets and ES waves
in diamagnets. Then q21,2

′ → −1/aγ1, q
2
1,2
′′ → 0 when

Ω → 0 and, therefore, the �rst condition is satis�ed. In
virtue of (25) one can write

q′n = Ω |Ω2 − Ω2
0n|−1/2v0n|ρ0n|,

q′′n = |Ω2 − Ω2
0n|1/2/v0n, (28)

where v0n = |v20n|1/2. In the region Ω2 � Ω2
0n disper-

sion and dumping are described by a linear function and
constant. When Ω2 → Ω2

0n for the waves the second con-
dition is satis�ed. On the basis of (26) one can write

q′,n
′′ = Ω1/2|ρ0n/2|1/2[1± (Ω2 − Ω2

0n)/2Ω |ρ0n|v20n].

(29)

The same sort of root dependence of the real and imagi-
nary parts of the wave number on frequency determines
the skin-e�ect. Di�erence of the real and imaginary parts
changes sign under transition of Ω through Ω0n. For fre-
quencies Ω2 � Ω2

0n, v
4
0n/ρ

2
0n the �rst condition is sat-

is�ed again. Therefore, for v20n < 0 the dispersion and
dumping of the waves are determined by relations (28).
For v20n > 0 the formulae for the real and imaginary parts
in (28) exchange.

Let us consider ES waves in paramagnets and SE waves
in diamagnets. For these waves the second condition is
satis�ed at Ω → 0 and, hence, the dispersion and dump-
ing of the waves are determined by (29). For frequen-
cies Ω2 � (v20na011/αaγ1)2 the �rst condition is satis�ed.
Consequently, for v20n < 0 the dispersion and dumping of
the waves are determined by (28). For v20n > 0 formulae
for the real and imaginary parts in (28) exchange.

The results of numerical solutions of Eqs. (24) are pre-
sented in Fig. 6 for parameters θv = 4, θt = 2, θr = 4,
γη = 0.05, γχ = 0.07, a = 10π. It can be seen that
the SE branch has both the boundary and transparency
frequencies. The value q′′1 (Ω = 0) calculated from (28)
coincides with that on the curve 1′′. In the low frequency
range the ES branch exhibits the skin-e�ect and bound-
ary frequency. In the high frequency range the disper-
sion relations are linear functions of frequency, dumping
is constant.

Figure 7 shows the real and imaginary parts of the
wave numbers as functions of frequency for diamagnets
for a = 2π and the other parameters are the same as
in Fig. 6. The SE branch has a non-transparency fre-

Fig. 6. Dependence of real, imaginary parts of wave
number for SE (1′, 1′′) and ES (2′, 2′′) branches on fre-
quency in paramagnet.

Fig. 7. Dependence of real, imaginary parts of wave
number for SE (1′, 1′′) and ES (2′, 2′′) branches on fre-
quency in diamagnets.

quency. The ES branch has boundary frequency and a
transparency frequency. The value q′′2 (Ω = 0) calculated
from (28) coincides with the value that on the curve 2′′.
In the frequency range below the boundary frequency ES
waves do not propagate. In the high frequency range ES
waves have linear dispersion and constant dumping that
complies with the result of analytic calculation.
In locally equilibrium continuum waves have none of

the above features except for the boundary frequency in
diamagnets.

6. Standing waves in locally non-equilibrium

continuum

Let us consider localized oscillations. On the basis of
the system of Eqs. (10) one can write the equations for
vector potential in the form

∆(∆A + (k20 + k2mc)A) + k20k
2
mA = 0, (30)

and magnetization in the form

∆(∆M + (k20 + k2mc)M) + k20k
2
mM

− grad div(cl∆M + ckM) = 0, (31)

where k2mc = k2m + 4πk2c , ck = clk
2
0 + 4πk2c .

Let the continuum be of the form of a parallelepiped
with sides l1, l2, l3, point peculiarities of the �elds be
absent (divA = 0, divM = 0) and the �elds be zero on
the boundary surface. Then the solution of (30) can be
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sought

Ax = A1 cos k1x sin k2y sin k3z,

Ay = A2 sin k1x cos k2y sin k3z,

Az = A3 sin k1x sin k2y cos k3z, (32)

where k1 = (π/l1)n, k2 = (π/l2)m, k3 = (π/l3)p,
n,m, p = 0, 1, . . . are integers. The potential amplitudes
are related by A1k1 +A2k2 +A3k3 = 0. The natural fre-
quencies, as seen from (30) and (31), satisfy the equation

q4ν − q2ν(q20 + q2m + 4πq2c ) + q20q
2
m = 0, (33)

where q2ν ≡ q2nmp = q21 + q22 + q23 are the discrete wave
numbers, qi ≡ ki(cτm). Equation (33) is transformed into
(12) at substitution of discrete wave number by a contin-
uous wave number (q2ν → q2). Hence the dispersion and
dumping of the standing waves are determined by the
system of Eqs. (16), (18) on the replacement q2 → q2ν .
Making use of (18) and taking into account the above

indicated conformities one can write the equation for the
imaginary part of frequency

n=15∑
n=0

eνnΩ
′′n
ν = 0, (34)

where eνn = en(q2 = q2ν). Inserting (34) into (16) with
replacement b1,2 by bν1, 2 = b1,2(q2 = q2ν , Ω ′′ = Ω ′′ν )
gives the expression for frequencies of standing modes in
the form

(Ω ′
2
ν)1,2 = −(bν1/2bν2)

±
[
(bν1/2bν2)2 − (bν0/bν2)

]1/2
. (35)

Equation (35) has real solutions on condition b2ν1 −
4bν0bν2 ≥ 0, at that in the case bν0bν2 > 0 there are

two solutions Ω ′
2
ν1,2 for bν1bν2 < 0 and no solutions for

bν1bν2 > 0, in the case bν0bν2 < 0 there is one solution
Ω ′2ν1. In diamagnets the unstable standing waves exist for
the region q2ν > q2c .

7. Discussion

In the foregoing the spatial dispersion has been ig-
nored. Calculations show that the spatial dispersion
eliminates the instability in high wave number region.
Depending on value of the dispersion constant the in-
stability disappears or retains just for an interval of the
wave numbers. Amplitudes of the unstable excitations
are restricted by nonlinear e�ects. In a stationary state

the number of excitations with opposite momenta and
moment of momenta is equal due to conservation laws.
When excitation energy dissipates (amplitude decreases)
instability arises, as a result energy loss is �lled up (am-
plitude return to initial value). In bounded continuum
there are steady states for discrete wave numbers q2ν lo-
cated into unstable region.
Above dynamic of the magnetization under �xed tem-

perature is examined. Variable temperature gives addi-
tional e�ects similar to e�ects in continuum with inter-
nal rotation [3]. In particular, thermomagnetic e�ect and
thermomagnetic waves are possible.
As standing waves have di�erent spatial parameters.

Therefore in elastically deformed continuum coupled
magneto-mechanical oscillations are possible.
Calculations show that taking into account the polar-

ization and current formula for imaginary and real parts
frequency and wave number become complicated at that
above considered peculiarities in �uctuation spectrum
and wave propagation remain.
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