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The dynamic equation which governs an excess temperature associated with the thermal mode in vibrationally
relaxing gas is derived. The nonlinear transfer of acoustic energy to the energy of the thermal mode in a relaxing
gas causes slow variation of temperature with time. The �nal dynamic equation is instantaneous. All types of
sound, including aperiodic, may be considered as an acoustic source of corresponding heating or cooling. The
study considers sound with frequencies much larger than the inverse time of the thermodynamic relaxation. In
the nonequilibrium regime, if standard attenuation is neglected, gas temperature decreases with time. Examples
concern heating and cooling caused by periodic in time sound and an impulse. The in�uence of standard viscosity,
thermal conductivity, and heat withdrawal is brie�y discussed.
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1. Introduction.

Basic equations and starting points

The establishment of nonequilibrium molecular physics
began in the sixties due to the laser revolution in physics
and chemistry. The interest to the hydrodynamics of the
nonequilibrium �uids is governed primarily by the fact
that this is one of the new �elds of modern hydrodynam-
ics. It is now passing through the stage of formulating the
fundamental equations and for revealing new physical ef-
fects. Nonequilibrium gases include, among other, the in-
terstellar medium, upper atmosphere, discharge plasma.
Interest in nonequilibrium phenomena in the physics of
gases was �rstly connected with studies of anomalous dis-
persion and absorption of ultrasonics waves. The reason
for these anomalies is usually the mechanism of retarded
energy exchange between the internal and translational
degrees of freedom of the molecules [1�3]. A number of
problems relating to the nonlinear e�ects and rate pro-
cesses in gases with internal relaxation, have been stud-
ied previously. In this context, the contributions due to
Chu [4], Parker [5], Clarke and McChesney [6] are worth
mentioning.

This paper is devoted to one important type of non-
linear phenomena, caused by sound. The nonlinear loss
in acoustic energy in the standard thermoviscous �uid,
which enlarges the background temperature, is called
acoustic heating [7, 8]. A rate of temperature increase
is proportional to the sound intensity and overall atten-
uation in a �uid. It was �rstly pointed out by Mole-
vich [9] that the nonlinear exchange of energy between
sound and the thermal mode may lead to cooling instead
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of heating in the nonequilibrium gas, if the standard at-
tenuation is small. The possibility of an anomaly in the
other nonlinear phenomenon caused by dominative sound
in a vibrationally excited molecular gas, streaming, was
also pointed out there. The �ow of this secondary vortex
motion may occur in the opposite direction compared to
that in the equilibrium gas.

The method worked out by the author allows to de-
rive instantaneous dynamic equations for sound and non-
-wave modes accounting for their interaction. We start
from the linear determination of modes as speci�c types
of gas motion whose steady but nonequilibrium state is
maintained by pumping energy into the vibrational de-
grees of freedom by power I and a heat withdrawal from
the translational degrees of freedom of power Q (both I
and Q refer to unit mass) (Sect. 2). This is necessary
for correct decomposition of equations governing sound
and the thermal mode accounting for the interactions of
modes (Sect. 3). The relaxation equation for the vibra-
tional energy per unit mass should complete the system
of conservation equations in the di�erential form. It takes
the form

dε

dt
= −ε− εeq(T )

τ
+ I. (1)

The equilibrium value of the vibrational energy at the
given temperature T is denoted by εeq(T ), and τ(ρ, T )
marks the vibrational relaxation time. The quantity
εeq(T ) in the case of a system of harmonic oscillators
equals

εeq(T ) =
~Ω

m [exp(~Ω/kBT )− 1]
, (2)

where m is the mass of a molecule, ~Ω is the magnitude
of the vibrational quantum, kB is the Boltzmann con-
stant. Equation (2) is valid over the temperatures, where
one can neglect anharmonic e�ects, i.e., below the char-
acteristic temperatures, which are fairly high for most
molecules [1�3]. The mass, momentum and energy equa-
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tions for a thermoviscous �ow in a vibrationally relaxing
gas read

∂ρ

∂t
+ ∇ · (ρv) = 0,

ρ

[
∂v

∂t
+ (v·∇)v

]
= −∇p+ η∆v +

(
ζ +

η

3

)
∇(∇·v),

ρ

[
∂(e+ ε)

∂t
+ (v·∇)(e+ ε)

]
+ p(∇·v)

= χ∆T + ρ(I −Q) + ζ (∇·v)
2

+
η

2

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vl
∂xl

)2

, (3)

where v denotes velocity of a �uid, ρ, p are density and
pressure, e marks internal energy per unit mass of trans-
lation motion of molecules, ζ, η are bulk and shear vis-
cosities (all supposed to be constants), xi denote space
coordinates. Besides Eq. (2), two thermodynamic func-
tions e(p, ρ), T (p, ρ) complete the system (3). Thermo-
dynamics of ideal gases provides equalities

e(p, ρ) =
p

(γ − 1)ρ
=

R

µ(γ − 1)
T (p, ρ), (4)

where γ is the isentropic exponent without account for
vibrational degrees of freedom, R is the universal gas
constant, and µ is the molar mass of a gas.

2. Planar motions of in�nitely small amplitude

and their decomposition

Let us consider a motion of in�nitely small amplitude
of a gas in the case η = 0, ζ = 0, χ = 0, Q = const,
I = const. The �ow is supposed to be planar along
axis Ox. We will discuss the in�uence of thermal conduc-
tivity, viscosity and the kind of function Q(T ) in Sect. 3.4
below. In this subsection, the results will be veri�ed by
including of the �rst partial derivative of Q with respect
to temperature T . Considering every quantity q as a sum
of unperturbed value q0 (in absence of the background
�ows, v0 = 0) and its variation q′, one readily rearranges
the governing equations of momentum, energy balance
and continuity into the form

∂v′

∂t
+

1

ρ0

∂p′

∂x
= 0,

∂p′

∂t
+ γp0

∂v′

∂x
− (γ − 1)ρ0

ε′

τ

+ (γ − 1)ρ0T0Φ1

(
p′

p0
− ρ′

ρ0

)
= 0,

∂ρ′

∂t
+ ρ0

∂v′

∂x
= 0,

∂ε′

∂t
+
ε′

τ
− T0Φ1

(
p′

p0
− ρ′

ρ0

)
= 0, (5)

where

Φ1 =

(
Cv
τ

+
ε− εeq
τ2

dτ

dT

)
0

(6)

is the quantity evaluated at p0, T0, and Cv = dεeq/dT .

The expansion in series of equations of state (4) was used
to express perturbations of translation temperature and
internal translational energy per unit mass

e′ =
p0

(γ − 1)ρ0

(
p′

p0
− ρ′

ρ

)
=

R

µ(γ − 1)
T ′. (7)

The last equation in the set (5) follows from Eq. (1):

∂ε′

∂t
+
ε′

τ
=

(
Cv
τ

+
ε− εeq
τ2

dτ

dT

)
0

T ′

= T0Φ1

(
p′

p0
− ρ′

ρ0

)
. (8)

The relaxation time in the most important cases may
be thought as a function of temperature accordingly to
Landau and Teller, τ(T ) = A exp(BT−1/3), where A and
B are some positive constants [1�3]. The Landau�Teller
dependence of relaxation time provides negative values
of dτ/dT .
Studies of �uid motions of in�nitely-small amplitudes

start usually with representing of all perturbations as
a sum of planar waves, where q̃(k) exp(iω(k)t) is the
Fourier-transforms of any perturbation q′:

q′(x, t) =

∫ ∞
−∞

q̃(k) exp(i(ωt− kx))dk + c.c. (9)

The approximate roots of dispersion equation for both
acoustic branches, progressive in the positive and nega-
tive directions of axis Ox, are well-known under the sim-
plifying condition ωτ � 1, which restricts consideration
by the high-frequency sound [3, 10]:

ω1 = ck +
i

2

(γ − 1)2T0
c2

Φ1,

ω2 = −ck +
i

2

(γ − 1)2T0
c2

Φ1, (10)

where c =
√

γRT0

µ =
√

γp0
ρ0

denotes the in�nitely small-

-signal sound speed in an ideal uniform gas. The last
term in the both dispersion relations manifests ampli�-
cation of sound in the nonequilibrium regime (if Φ1 < 0)
which does not depend on wave number k. The am-
pli�cation e�ect increases with enlargement of |dτ/dT |
and vibrational nonequilibrium m(ε− εeq)/kBT . We will
consider |Φ1T0/c

3k| � 1. This condition provides a weak
distortion of the sound wave (caused by attenuation or
ampli�cation) over its period. The two last roots of dis-
persive equation, estimated without limitation ωτ � 1,
sound

ω3 = i

(
1

τ
+

(γ − 1)(γ + c2k2τ2)T0
c2(1 + c2k2τ2)

Φ1

)
,

ω4 = 0. (11)

Third, non-wave mode, determined by ω3, comes from
the vibrational relaxation. The fourth root exists in any
planar �ow of a �uid, not necessarily relaxing or atten-
uating, it represents the thermal, or entropy, mode. In
equilibrium gas, this type of non-wave motion speci�es
isobaric increase in the background temperature and cor-
respondent variation in its density. It is well-established
that the nonlinear losses in acoustic energy in a gas with
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typical thermoviscous attenuation lead to the heating of
the background, and by means of that, in�uence on the
sound velocity in a �uid. The last two roots manifest slow
varying and stationary, non-wave motions of a gas. They
are of importance, among other applications, in studies
of the variations in the background after sound passing.

The overall velocity, pressure, density and internal
energy are also a sum of speci�c parts: v′(x, t) =∑4
n=1 v

′
n(x, t), and so on. In accordance to the roots

(10), (11), the Fourier-transforms of dynamic variables
may be represented as a linear combination of four spe-
ci�c Fourier-transforms of excess density ρ̃1, ρ̃2, ρ̃3, ρ̃4 as
follows:

ρ̃ =

4∑
n=1

ρ̃n, ṽ =

4∑
n=1

ṽn =

4∑
n=1

ωnρ̃n/k/ρ0, p̃ =

4∑
n=1

p̃n

=

4∑
n=1

ω2
nρ̃n/k

2, ε̃ =

4∑
n=1

ε̃n

=
T0Φ1

ρ0c2

2∑
n=1

ρ̃n

(
γω2

n

k2
− c2

)/
(iωn)

+
T0Φ1

ρ0c2
ρ̃3

(
γω2

3

k2
− c2

)/
(iω3 + 1/τ)

+
τT0Φ1

ρ0c2
ρ̃4

(
γω2

4

k2
− c2

)
. (12)

The links in the (x, t) space follow from Eqs. (12) and
roots of dispersion relations, Eqs. (10), (11). It is easy

to establish the operators d̃11, d̃
1
2, d̃

1
3, d̃

1
4 applying in the

Fourier-transform space in order to decompose from the
vector of overall perturbations only one constituent of
overall excess density, for example, corresponding to the
rightwards progressive sound

d̃11ṽ + d̃12p̃+ d̃13ρ̃+ d̃14ε̃ = ρ̃1. (13)

Equation (13) in fact contains four algebraic equations
determining four unknown quantities uniquely. The ma-
trix of 4 rows, projecting the vector of perturbations into
the vector of speci�c excess densities, has the form as
follows:
d̃11 d̃12 d̃13 d̃14
d̃21 d̃22 d̃23 d̃24
d̃31 d̃32 d̃33 d̃34
d̃41 d̃42 d̃43 d̃44

 ·

ṽ

p̃

ρ̃

ε̃

 ≡ D̃ ·

ṽ

p̃

ρ̃

ε̃

 =


ρ̃1
ρ̃2
ρ̃3
ρ̃4

 · D̃;


d̃11
d̃12
d̃13
d̃14

 =


ρ0
2c −

i (γ−1)2ρ0T0

2c4k Φ1

1
2c2 −

i (γ−1)(γ−3)T0

4c5k Φ1

− i (γ−1)T0

2c3k Φ1

− i (γ−1)ρ0
2c3kτ

 ;


d̃21
d̃22
d̃23
d̃24

 =


−ρ02c −

i (γ−1)2ρ0T0

2c4k Φ1

1
2c2 + i (γ−1)(γ−3)T0

4c5k Φ1
i (γ−1)T0

2c3k Φ1
i (γ−1)ρ0
2c3kτ

 ;


d̃31
d̃32
d̃33
d̃34

 =


i (γ−1)2ρ0T0

c4k Φ1

− (γ−1)T0τ
c4 Φ1

(γ−1)T0τ
c2 Φ1

(γ−1)ρ0
c2 − (γ−1)2T0ρ0τ

c4 Φ1

 ;


d̃41
d̃42
d̃43
d̃44

 =


0

− 1
c2 + (γ−1)T0τ

c4 Φ1

1− (γ−1)T0τ
c2 Φ1

− (γ−1)ρ0
c2 + (γ−1)2T0ρ0τ

c4 Φ1

 . (14)

The terms of D̃ are evaluated within accuracy up to terms
involving Φ1

1 and (1/(ckτ))1 inclusively. The analogous
matrix operator D, operating in the (x, t) space, may be
easily derived, taking in mind that (− ik)−1 corresponds
to the operator

∫
dx. Limits of integration depend on

the physical context of the problem. Application of any
row of matrix D on the overall vector of perturbations
decomposes the speci�c excess density, correspondent to
this row. Analogously, application of these rows individ-
ually on the system (5) itself results in dynamic equation
of speci�c excess density, correspondent to this row. For
example, application of the �rst and last row of the D on
the system (5) yields dynamic equations for the excess
densities of rightwards progressive sound (in the limit
ckτ � 1) and the entropy mode, relatively

∂ρ′1
∂t

+ c
∂ρ′1
∂x

+
(γ − 1)2T0

2c2
Φ1ρ

′
1 = 0,

∂ρ4
∂t

= 0. (15)

That obviously coincides to the roots of dispersion equa-
tion ω1 and ω4 established by Eq. (10), (11). In the other
words, the system of linear Eqs. (5) is projected uniquely
into four independent equations for every speci�c mode.
Projecting is in fact a certain way of linear combination
of equations in order to keep one speci�c quantity in the
linear part of equations (in this study, the speci�c excess
density. The choice of reference speci�c variables may
look di�erent) and reduce all speci�c quantities corre-
spondent to other modes there. It bases on linear links
of the �eld perturbations which in fact determine every
mode as well as dispersion relations.

3. Governing equations in a weakly nonlinear

�ow

3.1. Decomposing of speci�c equations by means of
projecting

Account for the nonlinear terms of the second order in
Eqs. (1), (4) yields the leading order series

T ′ = T0

(
p′

p0
− ρ′

ρ0
+
ρ′2

ρ20
− p′ρ′

p0ρ0

)
,

dε′

dt
= −ε

′

τ
+ T0

(
1

τ2
dτ

dT

)
0

ε′
(
p′

p0
− ρ′

ρ0

)
+ T0Φ1

(
p′

p0
− ρ′

ρ0
+
ρ′2

ρ20
− p′ρ′

p0ρ0

)
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+ T0Φ2

(
p′

p0
− ρ′

ρ0

)2

,

Φ2 = T0

[
− 1

τ2
Cv

dτ

dT
− ε0 − εeq

τ3

(
dτ

dT

)2

+
1

2τ

dCv
dT

+
(ε0 − εeq)

2τ2
d2τ

dT 2

]
0

. (16)

The governing dynamic system with account for
quadratic nonlinear terms di�ers from (5) by the
quadratic right-hand side

∂v′

∂t
+

1

ρ0

∂p′

∂x
= −v′ ∂v

′

∂x
+
ρ′

ρ20

∂p′

∂x
,

∂p′

∂t
+ γp0

∂v′

∂x
− (γ − 1)ρ0

ε′

τ

+ (γ − 1)ρ0T0Φ1

(
p′

p0
− ρ′

ρ0

)
= −v′ ∂p

′

∂x
− γp′ ∂v

′

∂x
+ (γ − 1)ρ′

×
[
ε′

τ
− T0Φ1

(
p′

p0
− ρ′

ρ0

)]
− (γ − 1)ρ0

×

[
T0

(
1

τ2
dτ

dT

)
0

ε′
(
p′

p0
− ρ′

ρ0

)

+ T0Φ1

(
ρ′2

ρ20
− p′ρ′

p0ρ0

)
+ T0Φ2

(
p′

p0
− ρ′

ρ0

)2
]
,

∂ρ′

∂t
+ ρ0

∂v′

∂x
= −v′ ∂ρ

′

∂x
− ρ′ ∂v

′

∂x
,

∂ε′

∂t
+
ε′

τ
− T0Φ1

(
p′

p0
− ρ′

ρ0

)
= T0

(
1

τ2
dτ

dT

)
0

ε′
(
p′

p0
− ρ′

ρ0

)
+ T0Φ1

(
ρ′2

ρ20
− p′ρ′

p0ρ0

)

+ T0Φ2

(
p′

p0
− ρ′

ρ0

)2

− v′ ∂ε
′

∂x
. (17)

The linear projecting is fruitful in investigations of non-
linear interactions of di�erent types of motion [11]. Con-
tributions of all other modes in the linear part of the �nal
dynamic equation are simply cancelled, but the nonlin-
ear terms become distributed between equations in the
proper way.

The problems of generation of the non-acoustic types
of motion by the dominative sound are of major impor-
tance. From the physical point of view, the mode is dom-
inative, when amplitudes of its perturbations are much
larger than those of other modes. It is well-established
that besides loss in acoustic energy, which leads to acous-
tic heating, representing the thermal mode, loss in acous-

tic momentum takes place which results in a streaming in
the standard thermoviscous nonlinear �ows. Streaming
exists only in the multi-dimensional �ow, it is rotational
motion. The thermal mode may exist in the planar �ow
as well. In the setting of these problems, sound is dom-
inative as compared with other types of motion. Since
the order of magnitude of secondary �ows is no higher,
than the squared Mach number O(M2) (they are typi-
cal nonlinear phenomena), the accurate account for the
quadratic corrections in the dominative sound, which are
of the same order, are necessary [11, 12].

3.2. Nonlinear equation governing dominative sound

Applying the row operator (d11 d
1
2 d

1
3 d

1
4) on the both

sides of equations which form the system (17), letting
all nonlinear terms be acoustic correspondent to the �rst
(progressive in the positive direction of axis Ox) mode,
and expressing all perturbations in the terms of speci�c
excess densities, one can readily derive the dynamic equa-
tion governing the dominative sound within accuracy up
to terms of order M2. Its nonlinear terms may be con-
sidered as certain corrections caused by interaction of
this wave with itself. The row (d11 d

1
2 d

1
3 d

1
4) in view of

ckτ � 1, |Φ1|T0/(c3k)� 1, takes the form:
d11
d12
d13
d14

 =


ρ0
2c −

(γ−1)2ρ0T0

2c4 Φ1

∫
dx

1
2c2 −

(γ−1)(γ−3)T0

4c5 Φ1

∫
dx

− (γ−1)T0

2c3 Φ1

∫
dx

− (γ−1)ρ0
2c3τ

∫
dx

 . (18)

The vector ψ1 below represents the linear links for the
rightwards progressive sound in the leading order, as it
follows from (10), (12):

ψ1 =


v′1(x, t)

p′1(x, t)

ρ′1(x, t)

ε′1(x, t)

 =


c
ρ0

+ (γ−1)2Φ1T0

2c2ρ0

∫
dx

c2 + (γ−1)2Φ1T0

c

∫
dx

1

− (γ−1)Φ1T0

cρ0

∫
dx

 ρ′1.

(19)

Accounting for (18), (19), and applying the row
(d11 d12 d13 d14) on the both sides of equations from the
system (17), one gets the leading order dynamic equa-
tion for the acoustic excess density

∂ρ′1
∂t

+ c
∂ρ′1
∂x
− cBρ′1 = −γ + 1

2

c

ρ0
ρ′1
∂ρ′1
∂x

, (20)

where

B = − (γ − 1)2T0
2c3

Φ1. (21)

This equation may be easily rewritten in terms of acous-
tic pressure by use of speci�c relation between it and
an excess acoustic density (Eq. (19)). The term in the
right-hand side of Eq. (20) manifests the well-celebrated
nonlinearity originating from nonlinearity in equation of
state and hydrodynamic nonlinearity [7, 8], it is of or-
der M2. To derive coupling nonlinear equations, one re-
quires involving the corrections in the linear de�nition
of sound by account for terms speci�c for the Riemann
wave [7]. They support adiabaticity of sound in the loss-
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less �ow. The corrected links with accuracy up to terms
of order M2 for the rightwards progressive sound are

Ψ1 =


c
ρ0
− cB

ρ0

∫
dx+ (γ−3)c

4ρ20
ρ′1

c2 − 2c2B
∫

dx+ (γ−1)c2
2ρ0

ρ′1

1

2Bc2

(γ−1)ρ0

∫
dx

 ρ′1. (22)

3.3. Governing equation for the thermal mode.
Acoustic heating or cooling?

In the context of the problem, sound is dominative,
and the corresponding thermal mode, caused by it, is
secondary with magnitude of excess density much less
than that of sound: |ρ4,A| � |ρ1,A|. Let us consider
only the rightwards propagating sound, assuming that
the leftwards one and the third mode, though may en-
large their magnitudes in time, keep small comparatively
to the dominative �rst mode. The quadratic nonlinear
corrections in the sound mode (22) should be considered
in order to derive valid dynamic equation of the thermal
mode. At this point, we make routine manipulations to
decompose the dynamic equation for the speci�c excess
density of the entropy mode by means of applying on
the system (17) by the row (d41 d

4
2 d

4
3 d

4
4) and collecting

together terms of the leading order. The �nal equation
governing acoustic heating is

∂ρ′4
∂t

= −2Bc

ρ0

(
ρ′21 + γ

∂ρ′1
∂x

∫
ρ′1dx

)
. (23)

The acoustic excess density in the right-hand side must
itself satisfy the dynamic Eq. (20).
Equation (23) bases on the consequent subdivision of

equations for di�erent types of motions by use of their
properties. It is instantaneous and applies to both peri-
odic and aperiodic sound. The only simpli�cations used
to simplify calculations, are ω1τ � 1, |B| � k, M � 1.
A simple estimation of acoustic source in the case of pe-
riodic sound may be done on the base of the linear equa-
tion, into which the governing equation of sound (20)
rearranges in the case of the in�nitely-small amplitude
sound, the �rst one from Eqs. (15). Its simple periodic
solution has the form

ρ′1 = Mρ0 sin(ck(t− x/c)) exp(Bx). (24)

Taking in mind that during an isobaric process of an ideal
gas Tρ = const, T ′ = −(T0/ρ0)ρ′, Eq. (23) with excess
acoustic density in the form (24) results in the leading
order to the following equality:〈

∂T ′4
∂t

〉
= −BT0c(γ − 1)M2 exp(2Bx)

= −2BT0(γ − 1)

ρ0c2
E(x), (25)

where 〈φ(x, t)〉 = ck
2π

∫ t+2π/(ck)

t
φ(x, t)dt is temporal av-

erage over sound period, E(x) = 〈p′1v′1〉, is the intensity of
sound, T ′4 is the excess background temperature, a quan-
tity relating to the thermal mode. Note that there are
acoustic periodic variations in temperature in this exam-

ple. On the average, they do not in�uence on the slow
variations of the background temperature. The right-
-hand side of Eq. (25) is the acoustic source of heating
or cooling, its negative value for positive B guarantees
cooling of a gas in the non-equilibrium regime. The tem-
perature production is positive in the equilibrium regime
like it takes place in the standard thermoviscous �ows.
In the Newtonian �uids, the periodic acoustic excess den-
sity and correspondent heating take the form

ρ′1 = Mρ0 sin(ck(t− x/c)) exp(−αx),〈
∂T ′4
∂t

〉
=
αT0c(γ − 1)M2

2
exp(−2αx)

=
αT0(γ − 1)

ρ0c2
E(x), (26)

where α = bk2

2cρ0
, b = 4η/3 + ζ + χ(γ − 1)2/(γRµ) is the

standard attenuation including the thermal one. The
similarity of Eqs. (25) and (26) is obvious, if B < 0.
The nonlinear Eq. (20) has the exact solution for the si-
nusoidal at a transducer signal of frequency ω, which is
valid before forming of a saw-like wave [3]:

ρ′1 = Mρ0 exp(Bx) (27)

×
∞∑
n=1

2JnnK(exp(Bx)− 1)] sin(nω(t− x/c)
nK[exp(Bx)− 1]

,

where K = (γ+1)Mω
2Bc . The distance from the transducer,

where the waveform breaks up, is

xb = ln(1 + 1/K)B−1. (28)

The variation in temperature associated with the ther-
mal mode, in accordance to Eq. (23), is〈

∂T ′4
∂t

〉
= −BT0c(γ − 1)M2 exp(2Bx)

×
∞∑
n=1

[
2Jn(nK(exp(Bx)− 1))

nK(exp(Bx)− 1)

]2
. (29)

Figure 1 shows dimensionless variations in temperature
associated with the entropy mode, in a unit time for some
positive and negative values of B.

Fig. 1. Variation in temperature in unit time, Q =
1
T0

∂T ′
4

∂t
as a function of dimensionless distance from a

transducer for M = 0.1 in accordance to Eq. (29), be-
fore forming of the saw-like wave.
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In the case of simple impulse sound in the role of acous-
tic source, ρ′1 = Mρ0φ (η = kc(t − x/c)), Eq. (23) is
readily integrated to yield in the leading order

T ′4(η) =
2BT0M

2

k

×
(
γφ

∫ η

−∞
φ(η)dη − (γ − 1)

∫ η

−∞
φ2(η)dη

)
. (30)

Figure 2 illustrates the excess temperature caused by sim-
ple symmetric and asymmetric pulses. The trace after a
pulse passing is the excess temperature of background,
positive for negative B. In evaluations, γ equals 1.4.

Fig. 2. Sound pulses φ = exp(−η2) (1, thin) and φ =

−
√
2eη exp(−η2) (2, thin) and caused by them excess

temperature (1, thick, and 2, thick, relatively) k
2BM2

T ′
4

T0

as functions of η.

3.4. Inclusion of viscosity, thermal conductivity
and heat withdrawal Q(T )

Taking into account for thermal conductivity and vis-
cosity results in corrections in the roots of dispersion re-
lation. Two acoustic ones, under condition ωτ � 1, are

ω1 = ck +
ibk2

2ρ0
+

i

2

(γ − 1)2T0
c2

(Φ1 +QT ),

ω2 = −ck +
ibk2

2ρ0
+

i

2

(γ − 1)2T0
c2

(Φ1 +QT ), (31)

where QT = (dQ/dT )0. The third root keeps un-
changed, and the last one sounds

ω4 = i
χk2(γ − 1)

γRµρ0
+ i

(γ − 1)QTT0
c2

. (32)

The linear modes and projectors take the new form.
Links for the rightwards progressive sound are as follows:

ψ1 =



v′1(x, t)

p′1(x, t)

ρ′1(x, t)

ε′1(x, t)



=


c
ρ0

+ (γ−1)2(Φ1+QT )T0

2c2ρ0

∫
dx− b

2ρ20

∂
∂x

c2 + (γ−1)2(Φ1+QT )T0

c

∫
dx+ χ(γ−1)2c

γRµρ0
∂
∂x

1

− (γ−1)Φ1T0

cρ0

∫
dx

 ρ′1.

(33)

In accordance to the roots of dispersion relation (31),
(32), the governing equation for sound (20) will in-
clude the term −b/(2c2ρ0)∂2ρ′1/∂x

2 in the left-hand
side. The equation for an excess density speci�c to
the thermal mode (23), will be completed by the term

−χ(γ−1)γRµρ0
∂2ρ′4/∂x

2+ (γ−1)QTT0

c2 ρ′4 in its linear part. It will

include also the quadratic nonlinear terms in the right-
-hand part, proportional to the thermal, viscous attenu-
ation and QT .

4. Concluding remarks
The main result of this study is instantaneous equa-

tion governing the excess density belonging to the ther-
mal mode, Eq. (23). It is valid in any time for every
types of sound, periodic or aperiodic. The only limita-
tions used to simplify calculations, are ckτ � 1, M � 1,
and |B| � k. The �rst of them restricts consideration
to the high-frequency sound. The nonlinear phenomena
by the low frequency sound (ckτ � 1) were studied by
the author in the paper [13]. It was discovered there
that the attenuation or ampli�cation of sound itself is
insigni�cant. The nonlinear generation of the thermal
mode by sound is also insigni�cant, at least in the �eld
of periodic sound. The study [13] investigates also the
nonlinear generation of the third mode, associated with
the excess vibrational energy. The conclusions are that
it may enlarge e�ciently in the �eld of the low-frequency
sound. The acoustic heating (if B < 0, or cooling, if
B > 0) is proportional to B, while heating due to stan-
dard attenuation is proportional to the overall attenua-
tion due to �rst, second viscosity and thermal conduc-
tion, b. The standard thermoviscosity always results to
sound attenuation and heating in a nonlinear �uid �ow.
The larger frequency stipulates the larger thermal and
viscous attenuation. The neglecting of standard atten-
uation comparatively to the nonequilibrium e�ects are
valid at frequencies ω � (ττ0)−1/2, where τ0 is the aver-
age time of the molecular free pass. On the other hand,
ωτ � 1. Both these conditions reduce a domain of sound
frequencies where the standard attenuation can be ne-
glected. For O2 at room temperature, τ equals 108τ0, so
that the condition of validity sounds: 104 � ωτ � 1.
Let us note that one can derive the system of conserva-
tion equations in the di�erential form from the gas kinetic
Boltzmann equation only under condition ωτ0 � 1. Oth-
erwise, the starting point in studies should be the Boltz-
mann equation. For O2, this condition gives ωτ � 108,
which includes the domain above. Acoustic wave may
be attenuated even in nonequilibrium regime if the stan-
dard attenuation is enough large; for periodic sound this

is conditioned by inequality bω2

2ρ0
+ (γ−1)2T0

2 (Φ1+QT ) > 0.
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Detailed studies in dynamics of nonequilibrium gas
forces to take into account in�uence of pumping and
heat removal [3, 14]. With increasing relaxation time the
ampli�cation coe�cient declines; however, a larger mag-
nitude of pumping I is required to maintain the same
degree of nonequilibrium, since ε − εeq ≈ Iτ (Eq. (1)).
That makes the nonequilibrium �uids inhomogeneous.
The conclusions above are no longer valid in the case
of intense pumping, because the linearization should be
proceeded with respect to background with non-zero spa-
tial gradients of pressure and density. This alters the very
de�nition of modes. The problem becomes fairly complex
mathematically. The paper [14], devoted to the ampli-
�cation of sound in a �at layer of nonequilibrium gas,
reveals some new properties compared to the case of the
uniform gas. In particular, the area of instability at the
plane pumping intensity � an inverse time of relaxation
becomes smaller. Unfortunately, the mathematical di�-
culties do not allow to consider the problem in general.
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