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Transient Dynamics of Atoms

Inside Submicron Rectangular Waveguides
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The time evolution of the radiation pressure forces due to the action of a laser light on two-level atom moving
inside a long hollow cylinder with a rectangular cross-section of sub-wavelength dimensions a× b is presented. This
evolution is considered when the frequency of the light is comparable to a dipole allowed transition frequency. In
this limit, the decay emission Γ is possible only via a very small number of modes. From the solutions of the
Bloch equations in the dynamic regime, we �nd that the transient regime, applicable from the instant the laser is
switched on. This is important for the gross motion, provided that the upper-state lifetime Γ−1 is relatively long
while the steady-state regime, formally such that t � Γ−1, is appropriate for the evaluation of the forces and the
dynamics for large Γ . Signi�cant variations of the characteristics of the system are emphasized. These features
are illustrated using typical parameters for the case of Eu3+ that has a particularly small Γ .
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1. Introduction

In the absence of any external e�ects, a dipole emit-
ter such as neutral molecules, atoms, and ions interacts
with the vacuum �elds that are bound by the cavity in
which the emitter is positioned. This interaction leads to
alteration of the decay emission rate of the emitter to be-
come a position-dependent. Since the pioneering work of
Purcell [1] much research has been carried out, especially
consequences for emitters immersed in various media and
cavity structures of di�erent shapes and sizes [2�8].
On the other hand, in the presence of any excitation

cavity modes, the state of the motion of the emitter can
be changed. With one of the modes that are excited
with su�cient intensity, the emitter su�ers a dissipa-
tive force, which is exploited in cooling (and heating)
atomic motion [9]. The atom also su�ers a gradient force,
which is used for trapping process [9�12]. Recently, there
have been a number of proposals for optical con�nement,
where the emitters may be trapped in two or three di-
mensions by a light �eld [13]. There are some arguments
that such con�nement may be useful in the study of the
Bose�Einstein condensates [14]. In addition, the subject
of manipulated matter in the form of neutral molecules,
atoms, and ions in cavities have received an impetus with
the realization that such a system can be used in quan-
tum information processing [15�17].
However, a direct atom channel through a hollow cylin-

drical waveguide has been considered [12]. An evanescent
mode pattern of guiding process a long hollow cylindri-
cal waveguide has been suggested and the success was
achieved in controlling atomic motion inside the submi-
cron dimensions regime [6, 8]. Normally the mechanisms
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of the atomic motion in light are controlled by the optical
Bloch equations and they are solved in the steady state
[2�12], to illustrate the mean optical forces for a two- and
three-level atom. In this case, the range of the validity
of these solutions is assumed to be in the same order of
the characteristic time required by the internal state of
the atom to reach its steady state. It therefore seems
appropriate to seek for an enlargement of the range of
investigations in order to include more general types of
problems, which are frequently met in practice.

The purpose of this article is to report a theory of the
dynamical aspects of the Bloch equations. We consider
a two-level atom in a particular cavity, namely a hol-
low in�nite cylinder with a rectangular cross-section of
sub-wavelength dimensions. We concentrate here on this
type of a waveguide because of a two-level atom dynamics
process based on the steady-state solutions of the optical
Bloch equations inside cylindrical waveguides is fully in-
vestigated. But this process based on the exact analytic
solutions for the optical Bloch equations in these struc-
tures have not been reported before. The range of the va-
lidity of the steady-state solutions is assumed to be in the
same order of the characteristic time required by the in-
ternal state of the atom to reach its steady state [18�20].
Certainly, those atoms have a short lifetime of the excited
state such as sodium and are not appropriate preference
for considering the transient optical e�ects. Because the
forces will rapidly converge to the steady-state case, this
makes the transient forces negligible. To point out the
transient e�ects we need to consider the transitions with
a long upper-state lifetime, and rare-earth ions such as
Eu3+ will be good examples.

The outline of the paper is as follows: in Sect. 2 we
outline the theoretical framework beginning with a state-
ment of the Hamiltonian appropriate for our model in-
volving an atom of �nite mass, with the internal dynam-
ics represented by two quantum levels coupled by inter-
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action with the electromagnetic �elds. We then outline
the steps and justify the approximations leading to drive
the optical forces that based on the steady-state solutions
of the optical Bloch equations. Section 3 is devoted to
the derivation of the di�erent parameters which are re-
lated to the two-level atom, interacting with the vacuum
�elds that are now con�ned within a hollow cylindrical
waveguide with rectangular cross-section. In Sect. 4, we
outline the steps leading to the explicitly time dependent
solutions of the optical Bloch equations. In Sect. 5, the
emphasis is given to the case of the atomic motion in
this structure. The essential features of the forces have
been reported and discussed for the Eu3+ ion. Section 6
contains our comments and conclusions.

2. Steady state optical forces

We are concerned here with the evolution of the aver-
age forces acting on a two-level atom, due to its interac-
tion with light. We assume that the light is in the form
of a coherent beam with complex amplitude α and has a
plane wave distribution. The Hamiltonian of the system
reads,

H = HA +HF +Hint, (1)

where HA and HF are the unperturbed Hamiltonian for
the atom and the �eld, respectively, and can be written as

HA =
P 2

2M
+ ~ω0π

†π, (2)

HF = ~ωa†a, (3)

where P is the center-of-mass momentum operator, M
is the mass of the atom, ω0 is the atomic transition fre-
quency and π and π† are the atomic raising and low-
ering operators. In Eq. (3), a and a† are the creation
and annihilation operators for a photon with energy ~ω.
The interaction Hamiltonian Hint in Eq. (2) describes the
coupling of the atom to the electromagnetic �eld and is
given in the electric dipole approximation at this point;
it is convenient to deal with the �eld associated with an
excited mode in the classical limit. In the rotating wave
approximation, the interaction Hamiltonian may then be
written as

Hint = −µ·E(r). (4)

At this point, it is convenient to deal with the �eld
associated with an excited mode in the classical limit. In
the rotating wave approximation, the interaction Hamil-
tonian may then be written as

Hint = − i~
(
π̃†αf(r)−H.c.

)
, (5)

where π̃ = π exp(iωt), f(r) = Ω(r) exp(iθ(r)) and the
quantity Ω(r) is the Rabi frequency which represents the
rate of the induced transition from the upper level to the
lower and vice versa. It is given by

~Ω(r) = |α〈µ〉12·F | , (6)

where F is the mode vector function. The forces acting
on the atomic center-of-mass can be derived using the
optical Bloch equations for the atomic density matrix el-
ements once we make the semi-classical approximation

which allows the gross motion of the atom to be treated
classically, while maintaining a quantum treatment for
the internal dynamics of the atom. Thus the position
and momentum operators of the center of mass may be
replaced by their expectation values r0 and P 0. The
density matrix associated with the internal motion of the
atom ρ(t) evolves with time according to the well-known
relation

dρ

dt
= − i

~
[H, ρ] + <ρ, (7)

where <ρ accounts for the relaxation dynamics of the
atomic system. In the adiabatic approximation, the
atomic velocity v = P 0/M is assumed to be constant
during the time taken for the dipole moment to reach its
steady-state value. The position r0 of the atom at time
t is then given by

r0 = r + vt, (8)

where we have rede�ned r so that it now denotes the (up-
dated) initial position of the atom. Thus we can write

f(r0) = f(r + vt) ≈ f(r) exp (i (v∇θ(r)/t)) , (9)

where we have assumed that the change in the �eld ampli-
tude is negligible during this period of the run. Substitut-
ing the expression of H in the master equation and using
the aforementioned properties of HA and Hint, we obtain
the following optical Bloch equations for the atomic den-
sity matrix elements:

dρ̃11
dt

= 2Γρ22 + f(r)ρ̃12 + f∗(r)ρ̃21, (10)

dρ̃12
dt

= −[Γ + i∆(r,v)]ρ̃12 + f∗(r)[ρ22 − ρ11], (11)

dρ̃21
dt

= −[Γ − i∆(r,v)]ρ̃21 + f(r)[ρ11 − ρ22], (12)

where we use Γ for the upper-to-lower-level decay rate,
∆(r,v) = ∆0 − v·∇θ(r) is the total detuning, ∆0 =
ω−ω0 is the detuning of the �eld frequency from atomic
resonance, ρ̃21 = 〈π̃〉 and ρ̃12 = ρ̃21 exp(−tv∇θ(r)).
Since the two-levels are the only ones in the problem,
the conservation of probability gives

ρ11 + ρ22 = 1. (13)

The mean optical force acting on the atom is de�ned
as the average rate of change of the atomic momentum
which yields

〈F 〉 = −〈∇Hint〉 . (14)

After some simple algebra, the force reads

〈F 〉 = 〈F dip〉+ 〈F diss〉 . (15)

This causes two types of forces to appear, a dipole force,
proportional to the Rabi frequency gradient and to the
in-phase component of the dipole

〈F dip〉 = i~ [ρ̃12(t)f(r)− ρ̃21(t)f∗(r)] (∇Ω(r)/Ω(r))

(16)

and a dissipative force, proportional to the phase gradi-
ent and to the quadrature component of the dipole

〈F diss〉 = −~ (ρ̃12(t)f(r)− ρ̃21(t)f∗(r))∇θ(r). (17)

For given initial conditions the solution of the optical
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Bloch Eqs. (10), (11) and (12) leads formally to the deter-
mination of the forces by direct substitution in Eqs. (16)
and (17). The steady state takes place when all time
derivatives in the optical Bloch equations are set equal to
zero and corresponds to the long-time limit. The steady-
-state solution of the optical Bloch equations can be writ-
ten as

〈F diss(r,v)〉 = 2~Γ (r)Ω2(r)

×
(

∇θ(r)

∆(r,v) + 2Ω2(r) + Γ (r)

)
, (18)

〈F dip(r,v)〉 = −2~Ω(r)∆(r,v)

×
(

∇Ω(r)

∆(r,v) + 2Ω2(r) + Γ (r)

)
. (19)

In our recent paper [18, 19] we have recognized that there
were some special cases of the interest where the original
optical Bloch equations can be solved analytically. Then
the transient e�ects can be incorporated using our treat-
ment. We shall report and discuss the results of these
phenomena in the last section.

3. Con�ned optical structure

We consider a two-level atom, interacting with the vac-
uum �elds that are now con�ned within optical structure
in form of hollow cylindrical waveguides with a circular
cross-section, as illustrated in Fig. 1. As shown in this
�gure, a normal cross-section is assumed to have the di-
mensions a × b and is taken to lie in the y�z plane with
the cylinder axis along the x-direction, coinciding with
the straight line y = b/2, z = a/2. The cylindrical wave-
guide is bounded by walls arising from the intersection
of four planes at y = 0, y = b and z = 0, z = a, all
are assumed to be planar surfaces of perfect conductors
which exclude all electromagnetic �elds from their inte-
rior. Once again, the standard electromagnetic bound-
ary conditions apply such that the tangential component
of the electric �eld vector and the magnetic �eld vector
must vanish at every point on all the guide walls.

Fig. 1. Schematic drawing of the hollow rectangular
waveguide.

It is well-known that such con�ned optical structure
leads to two types of physical e�ects. First, the decay
emission rate of the atom is modi�ed and, second, the

atom experiences energy shifts to both levels. In this
paper we are just concerned with the �rst one, for the
details. Using Fermi's golden rule with this symmetric
structure, the decay emission rate Γ is independent of
the coordinate x (i.e. parallel axis) and can be evaluated
for the three possible orientations for a dipole situated at
an arbitrary point (0, b/2, a/2) as follows [21]:

Γ‖(y, z) = Γ0

[2b/λ]∑
m=0

[2a/λ]∑
n=0

3λ3

4π2a2b
Gxnm, (20)

Γ⊥(y, z) = Γ0

[2b/λ]∑
m=0

[2a/λ]∑
n=0

(
3λ

b

)

×
(

1

fmn
F y,znm +

λ2

4π2a2
Gy,znm

)
, (21)

where G and F functions appearing in above equation
are given by

Gxmn =
π2(a2m2/b2 + n2) sin2(mπy/b) sin2(nπz/a)

[(ω0a/c)2 −m2π2a2/b2 − n2π2]1/2
,

(22)
Gymn =

m2a2(a2m2/b2 + n2)−1 cos2(mπy/b) sin2(nπz/a)

b2[(ω0a/c)2 −m2π2a2/b2 − n2π2]−1/2
,

(23)
Gzmn =

n2(a2m2/b2 + n2)−1 sin2(mπy/b) cos2(nπz/a)

[(ω0a/c)2 −m2π2a2/b2 − n2π2]−1/2
, (24)

F ymn =

n2(a2m2/b2 + n2)−1 cos2(mπy/b) sin2(nπz/a)

[(ω0a/c)2 −m2π2a2/b2 − n2π2]1/2
, (25)

F zmn =

m2a2(a2m2/b2 + n2)−1 sin2(mπy/b) cos2(nπz/a)

b2[(ω0a/c)2 −m2π2a2/b2 − n2π2]1/2
,

(26)

where Γ0 is the free-space decay rate, λ is the free space
transition wavelength and n, m refer to the order of ex-
cited mode while [2b/λ] and [2a/λ] stands for the integer
part of the bracketed quantity. All expressions of the de-
cay emission rate can easy be plotted as distribution in
three dimensions as functions of the ratio y/b and z/a.

On the other hand, the position-dependent Rabi fre-
quency Ω , which characterizes the interaction of an atom
with the electric �elds and for TM11 excited mode, Ω for
three possible orientations is given by [21]:

Ω11
x (y, z)

= Ω0

(
2c

ω0

)(
π2

b2
+
π2

a2

)
sin
(πy
b

)
sin
(πz
a

)
, (27)

Ω11
y (y, z) = Ω0

(
2ckπ

bω0

)(
π2

b2
+
π2

a2

)−1/2
× cos

(πy
b

)
sin
(πz
a

)
, (28)
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Ω11
z (y, z) = Ω0

(
2ckπ

aω0

)(
π2

b2
+
π2

a2

)−1/2
× sin

(πy
b

)
cos
(πz
a

)
, (29)

where Ω0 is the free-space Rabi frequency and k is an
axial wave vector inside the rectangular waveguide which
is given by

k =
[
(ω/c)2 − (mπ/b)2 − (nπ/a)2

]1/2
. (30)

The last factor which must be considered in this con-
text is the laser light detuning. For such an optical sys-
tem the dynamic detuning is given by the following ex-
pression [21]:

∆(y, z, n,m,v) = ∆0 − (v · kx̂) , (31)

where the static detuning ∆0 = ω0 − ω(k, n,m).
These di�erent factors will be introduced in the origi-

nal optical Bloch equations which can be solved by using
the treatment developed in [18, 19], we outline here the
essential steps for the solution.

4. Dynamical aspects in the optical

Bloch equation

It is possible to make the atom density matrix equa-
tions of the motion (8)�(10) resemble those for a magnetic
dipole undergoing precession in a magnetic �eld. This ap-
proach has value not only in solving the equations, but
also in providing a physical picture of the density matrix
in motion. The equations we derive here are equivalent to
the Bloch equations treated in [20]. On the other hand,
for several useful situations, a single level decay constant
is a good approximation so that the Bloch model is ac-
curate and may be easier to use. The solutions obtained
are used in the discussion of light forces in the considered
structure.
We introduce the real quantities

U = ρ̂21 + c.c., (32)

V = i ρ̂21 + c.c., (33)

W = ρ22 − ρ11, (34)

in terms of which

ρ̂21 = (1/2)(U − iV ). (35)

These quantities are very little in an optical period
and are the components of the vector Bloch B. Taking
derivatives of Eqs. (32), (33) and (34) and using (12),
(13), we �nd the Bloch equations

U̇ = −ΓU + ∆(r,v) + 2<(f(r))W, (36)

V̇ = −ΓV −∆(r,v)U − 2℘(f(r))W, (37)

Ẇ = −2Γ (W + 1)− 2<f(r)U + 2℘(f(r))V. (38)

Here Ẇ equation is written for the case of upper to lower
level decay. This system can be written in matrix form
as  U̇

V̇

Ẇ

 =

 −Γ ∆ 2<(f)

−∆ −Γ −2℘(f)

−2<(f) 2℘(f) −2Γ


 U

V

W



+

 0

0

−2Γ

 . (39)

These equations are similar to those of Bloch studied
in [20]. The same treatment can be used here to obtain
the solutions of this linear system. This system can be
written in the matrix form as

Ḃ = ΨB + Λ, (40)

where B is the Bloch vector, Ψ is a non-diagonal (3× 3)
matrix and Λ is an inhomogeneous vector. The general
solution of the linear coupled system (39) is

B = Bh +Bp, (41)

where Bh is the homogeneous solution of the system
without the term Λ and Bp is the particular solution.

By choosing Ḃ = 0 in the system (39), the particular so-
lution can be obtained Bp = Ψ−1Λ which is the steady-
-state solution of given Eqs. (8) and (9).
Consider now the homogeneous system

Bh = ΨB. (42)

The eigenvalues of the homogeneous system satisfy the
characteristic equation

(Γ + λ)2(2Γ + λ) + 4 |f(r)|2 (Γ + λ)

+ [∆(r,v)]
2

(2Γ + λ) = 0, (43)

where |f(r)|2 = |Ω(r)|2 is the Rabi frequency, as we
have seen that the Rabi frequency depends only on the
normal coordinate y, z, then the solutions depend on
the same component. In fact, the eigenvalues give us
all the information we need to know about how the ho-
mogeneous solution behaves in time. It is possible that
two of the eigenvalues can be complex numbers that if
λ2 = λ∗3 = a± ib then the homogeneous solutions can be
rearranged so that they are of the form

h(t) = Ah1 exp(λ1t) +Ah2 exp(at) cos(bt)

+Ah3 exp(at) sin(bt), (44)

where h(t) stands for either U, V , or W , and the A′s co-
e�cients are constants to be determined from the initial
conditions.

5. Applications

Here we emphasize the submicron cavity dimensions
in the rectangular waveguides context. Our aim is to de-
scribe the optical forces that act on the ion, the manner
in which such forces change the state of motion in the
steady state and the transient optical regime. The state
of the motion of the ion inside the rectangular waveguide
can be altered by the excitation of one or more cavity
modes. With one of the modes excited with su�cient
intensity, the ion experiences radiation forces of the type
familiar in the case of ions subject to spatially varying
light in free space [20]. On the other hands, the solu-
tions of the optical Bloch equations show that the dipole
moment and hence the forces acting on the ion relax to
steady state values outside a time of the order 5Γ−1 from
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the instant at which the light �eld is switched on [18�20].
Since this time is typically much greater than the obser-
vation times involved in the channeling of ions through
the structure, we need to investigate the e�ects of the
transient state forces.

To show the e�cacy of our treatment and the e�ects
of the transient regimes, we shall focus on the dissipative
forces. The explicit form of the dissipative force is given
in Eq. (17) which contains the factor ∇θ corresponding
to the momentum imparted by light to the ion. However,
in view of equations of the electric �eld inside this opti-
cal structure [21], the mode phase for all modes is given
by θ = kx. Therefore, the gradient of the mode phase
is ∇θ = kx̂. This immediately �xes the direction of the
dissipative force as parallel to the longitudinal axis of the
waveguide

〈F diss〉 = −~ [ρ̃12(t)f(r)− ρ̃21(t)f∗(r)] k. (45)

To study the transient e�ects we need to consider the
transitions with a long upper state lifetime, and rare-
-earth ions are good examples of this ultimate. In par-
ticular, we consider Eu3+ ion in the calculations with
the following parameters [18]: λ = 614 nm, Γ0 =
1.1× 103 s−1, Ω0 = 3.9× 107 s−1 and k = 1.0× 107 m−1,
and in the case, ∆(r, v) = 0 with the initial condition
v(0) = 0. In Figs. 2 and 3 we display the dissipative force
in terms of time at the point x = 0 with di�erent posi-
tions of the ion on the normal cross-section within rect-
angular waveguide for the case, when the p-polarization
cavity mode is excited and the electric dipole matrix is
oriented parallel to the waveguide. The oscillatory be-
havior persists again and the time of the transient e�ects
is about three times of the decay rate.

Fig. 2. Dynamic dissipative force (in unit of ~kΩ)
when the atom �xed at the point (x = 0, y = b/2,
z = a/2) as a function of time, when TM11 mode is
excited and dipole matrix is oriented parallel to guide
axis.

Figure 4 shows the dynamic dissipative force acting
on Eu3+ when the p-polarization cavity mode is excited
and the electric dipole moment matrix is oriented nor-
mal to the waveguide for the point x = 0 with di�erent
positions of the ion on the normal cross-section within

Fig. 3. Dynamic dissipative force (in unit of ~kΩ)
when the atom �xed at the point (x = 0, z = a/2)
with di�erent position on the y axis, as a function of
time, when TM11 mode is excited and dipole matrix is
oriented parallel to guide axis.

Fig. 4. Dynamic dissipative force (in unit of ~kΩ)
when the atom �xed at the point (x = 0, z = a/2)
with di�erent position on the y axis, as a function of
time, when TM11 mode is excited and dipole matrix is
oriented normal to the guide axis.

rectangular waveguide. The remarkable point in these
cases is the decay of the force in an oscillatory manner,
with manifestation of the beats phenomena. On the other
hand, we mention here that the dissipative force inside
the waveguide is evaluated at some positions. If the atom
moves then it acquires velocity, which means its position
changes with time and the dynamics detuning delta also
changes with the velocity. So, the forces are evaluated at
�xed positions as time passes, but the atom is not there,
as it has moved on. This important point may be exam-
ined in detail by solving the classical motion of the center
of mass of the atom.

6. Conclusion

We have focused here only on cylindrical atom wave-
guides characterized by two distinct features. First the
guide is assumed to have a rectangular cross-section and
second, the walls of the waveguide are taken to be perfect
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conductors. As obvious, lines of extension of this work
should consider cylindrical perfect conductor atom guides
with circular cross-sections also of subwavelength dimen-
sions. Although the atomic motion in hollow submicron
circular cylinders based on the steady-state optical forces
has been completely evaluated, the e�ects of the dynami-
cal aspects optical forces along the lines discussed in this
paper for these structures have not been reported before.
It is well known that the electromagnetic modes of circu-
lar cylindrical guides have azimuthal components which
give more signi�cance of the transient dynamics e�ects
on the helical motion of atoms.
A related problem that could be studied is that of

cylindrical atom guides with guide walls made of di-
electrics characterized by dispersive dielectric functions
which could also exhibit loss. Although the decay emis-
sion of atoms in dielectric waveguides has been investi-
gated [8], the atomic motion neither with steady state nor
dynamical aspects optical forces in this structure have
been reported before. Work along these lines is now in
progress and the results will be reported in due course.
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