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that some characteristics of business cycle can be modelled in a non-parametric way by discrete spectrum of the
almost periodically correlated time series. On the basis of estimated characteristics of this spectrum business cycle
is extracted by �ltering. As an illustration we characterise the main properties of business cycles in industrial
production index for Polish economy.

DOI: 10.12693/APhysPolA.123.567

PACS: 89.65.Gh, 05.10.Gg

1. Introduction

Seminal works, that originated interest in empirical
modelling of business cycles in macroeconomy, clearly in-
dicated their inhomogeneity for both, spatial and time
domain. In particular, introductory remarks of Mitchell
in Business Annals [1], contains the following suggestion:
No two recurrences in all the array seem precisely alike.
Business cycles di�er in their duration as wholes and in
the quickness and the uniformity with which they sweep
from one country to another. When identifying business
cycle Lucas proposed its own conception, which, as he
states in his paper [2], identi�es the business cycle with
movements about trend in gross national income. These
movements are typically irregular in period and in ampli-
tude. Regularities are only observed in the co-movements
among di�erent aggregative time series; see [2]. It is clear
that Mitchell initially suggested di�erent time pattern of
business cycles for di�erent economies. However, it is
obvious that from the dynamic point of view, as Lucas
states, business cycle exhibits irregular and nonperiodic
character.
For developed economies some stylised facts about

business cycles are known in the literature; see [3] or [4].
But we see the lack of precise and well established meth-
ods of formal statistical modelling of those empirical
properties. It prompts new studies resulting many dif-
ferent approaches and frameworks of business cycle ex-
traction; see for example exhaustive review presented by
Diebold and Rudenbush [5]. When the lack of the the-
ory of statistical inference seems to be a persistent state,
the consensus about empirical properties of business cy-
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cles is based, either on an ad hoc reasoning, or on the
empirical results, that are possible to con�rm using a
group of methods, built on the basis of relative di�erent
frameworks. However, the extraction of the business cy-
cle component from observed time series is still a contro-
versial issue. In particular, since there is ongoing interest
in many approaches to separate growth component from
the cyclical component, and because there is no consen-
sus on how to detrend the data, the business cycle stylised
facts are sensitive to the adopted procedure. Hence, this
has become not only a controversial issue in the busi-
ness cycle theory itself, but also a subject of criticism by
competing empirical approaches, as well.
The main purpose of this paper is to present a novel

approach to formal business cycle estimation. We pro-
pose a non-standard subsampling procedure, in order to
make formal statistical inference about the properties of
the business cycle. We show that business cycle can be
modelled by parameters of discrete spectra of the almost
periodically correlated (APC) stochastic process. The
APC class is a generalisation of periodically correlated
(PC) class of stochastic processes, introduced by Glady-
shev [6]. The vast literature con�rmed substantial em-
pirical importance and �exibility of PC class in many
time series applications, see [7�14]. According to Hurd
and Miamee [15], the periodically correlated stochastic
processes are nonstationary, but non-constant uncondi-
tional expectation of the process exhibits periodic, and
hence regular, evolution in time domain. The generali-
sation presented in this paper assumes that the mean of
the nonstationary time series can be described by almost
periodic function, i.e. the function that belongs to the
topological closure of periodic class of functions.
From the de�nition, APC stochastic processes may de-

scribe irregular character of unconditional means for non-
stationary time series. Assuming that detrended time se-
ries follows APC, we relax assumption of stationarity of
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cyclical factor, very commonly imposed in �ltering ap-
proaches. Nonstationarity of the cycle component of the
series, together with possible irregularities in time pat-
tern of the unconditional mean, makes our approach rel-
atively �exible and general. Consequently, incorporating
the APC factor into the model of observed discrete time
series should result in much more accurate approach to
business cycle extraction than those proposed so far.
In the empirical part of the paper we analyse the cycli-

cal behaviour of production sector in Poland with the
use of the model with APC stochastic component. We
characterise business cycle on the basis of industrial pro-
duction index and also on some subsector indices. We
discuss the empirical results and re�ect them to the pre-
vious analyses conducted for the Polish economy.

2. Basic notation and de�nitions

Formally, the second-order and real-valued time series
{Xt : t ∈ Z} is called periodically correlated if both
the mean function µ(t) = E(Xt) and the autocovariance
function B(t, τ) = cov(Xt, Xt+τ ) are periodic at t for ev-
ery τ ∈ Z, with the same period T . In order to introduce
the class of almost periodically correlated time series we
need the de�nition of almost periodic function. We recall
the following de�nition from [16]:
De�nition 2.1. A real-valued function f(t) : Z −→ R

of an integer variable is called almost periodic (AP in
short), if for any ε > 0 there exists an integer Lε > 0,
such that among any Lε consecutive integers, there is an
integer pε with the property

sup
t∈Z
|f(t+ pε)− f(t)| < ε.

A second-order real-valued time series {Xt : t ∈ Z}
is called almost periodically correlated if both the mean
function µ(t) = E(Xt) and the autocovariance function
B(t, τ) = cov(Xt, Xt+τ ) are almost periodic function of
an integer variable, for every τ ∈ Z. It is easy to see
that any periodic function is almost periodic. Therefore,
the class of APC time series is wider than the class of
PC time series. During last �ve decades the APC class
was broadly applied in telecommunication ([17] and [18]),
climatology [19] and many others �elds. For exhaustive
review of possible applications see [20] or [21]. Empirical
importance of such a class of nonstationary time series
prompted new studies concerning properties and estima-
tion methods.
In APC case the mean function and the autocovariance

function B(t, τ) for any τ ∈ Z has the Fourier represen-
tation of the form

µ(t) ∼
∑
ψ∈Ψ

m(ψ)e iψt, B(t, τ) ∼
∑
λ∈Λτ

a(λ, τ)e iλt,

(1)
where the Fourier coe�cients m(ψ) and a(λ, τ) are
given by

m(ψ) = lim
n→∞

1

n

n∑
t=1

µ(t)e− iψt,

a(λ, τ) = lim
n→∞

1

n

n∑
j=1

B(j, τ)e− iλj , (2)

see [22, 15]. According to [16] sets Ψ = {ψ ∈ [0, 2π) :
mX(ψ) 6= 0} and Λτ = {λ ∈ [0, 2π) : a(λ, τ) 6= 0} are
countable. Hence, the set Λ =

⋃
τ∈Z Λτ is also countable.

If the time series is PC, then representations (1) become
equations and the sets Ψ and Λ are contained in the set
{2kπ/T : k = 0, 1, . . . , T − 1}.
In the problem of business cycles extraction the vast

econometric literature exploits approaches based on the
assumption of zero mean imposed on the distribution of
stochastic factor describing business �uctuations. More-
over, this stochastic factor is usually modelled under
stationarity assumption, leading to the framework that
utilises parameters of continuous spectrum. The econo-
metric approach presented in this paper relaxes station-
ary assumption, and consequently a more general dy-
namic model of observed time series is subject to em-
pirical analysis. We model business cycles in a non-
-parametric way, taking into account discrete spectra
of observed time series. It means that we characterise
business cycles by non-zero frequencies ψ ∈ Ψ and by
corresponding Fourier coe�cients m(ψ). The de�nition
and properties of discrete spectra in simple representa-
tion see [23], or in PC case in [15].
Notice that any ψ0 ∈ (0, 2π) corresponds to the length

of the cycle 2π/ψ0. Hence the following testing problem:

H0 : ψ0 6∈ Ψ , H1 : ψ0 ∈ Ψ , (3)
enables to test the statistical signi�cance of the cycle with
appropriate length. According to the de�nition of the
set Ψ and Fourier coe�cients m(·) our testing problem
is equivalent to the following:

H0 : |m(ψ0)| = 0, H1 : |m(ψ0)| 6= 0. (4)
We consider formulation (4) in detail. Since we are
interested in business cycle estimation we restrict fre-
quency ψ0 such that corresponding length of the cy-
cle is not shorter than 1.5 years. This formally means
that in further analysis for monthly data we assume that
ψ0 ∈ (0, 0.35).
In this paper by amplitude, which corresponds to fre-

quency ψ ∈ Ψ ∩ (0, 0.35), we de�ne the distance between
maximum and minimum value of the function h(t) =
2Re[m(ψ)e iψt]. The problem stated above requires sta-
tistical theory of detecting signi�cant frequencies in the
set Ψ and corresponding Fourier coe�cients m(·). In
the next sections we present some results given sampling
model generated by APC assumption.

3. Estimation problem

By {Xcn+1, Xcn+2, . . . , Xcn+dn} we denote a sample
from APC time series {Xt : t ∈ Z}, where {dn}n∈N
is any sequence of integers tending to in�nity with n
and {cn}n∈N is any sequence of integers. For any ψ ∈
[0, 2π), estimator m̂cn,dn

n (ψ) (m̂c,d
n (ψ) for short) of the

parameter m(ψ), in representation (1), based on sample
{Xcn+1, Xcn+2, . . . , Xcn+dn} takes the form
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m̂c,d
n (ψ) =

1

dn

cn+dn∑
j=cn+1

Xj e
− iψj . (5)

The standardised version of (5) has asymptotic normal
distribution with zero mean; see [24], Theorem 2.1. Ad-
ditionally, the variance of this distribution is a function
of values of the generalised spectral density, calculated
at arguments dependent on ψ. For de�nition and basic
properties of generalized spectral density in APC case see
[25, 26]. Since the standard theory, presented in [27], pro-
vides methods of estimation of generalised spectral den-
sity in APC case only under the zero-mean assumption
or under the assumption that the set Ψ is known and
�nite, estimation of generalised spectral density in our
case is not possible so far. Therefore, in the paper we
exploit subsampling methodology, to construct asymp-
totically consistent test related to (4). In this approach
the asymptotic variance estimation is not of particular
interest. Similarly, subsampling methodology was also
used for PC case in time domain in [28] and for APC
case in frequency domain in [27].
The problem of frequency estimation ψ0 can be solved

on the basis of a more generalised approach than pre-
sented by [29]. Given assumption that there exists inter-
val Iψ0

, such that Iψ0
∩ Ψ = {ψ0}, it is possible to for-

mulate the natural estimator of the unknown frequency
ψ0 of the form ψ̂n = argmaxx∈Iψ0

(
√
n|m̂n(x)|). As it

was shown in [24], Theorem 3.1, under some regularity
conditions we have[

m̂c,d
n (ψ̂n)

ψ̂n

]
p−→

[
m(ψ0)

ψ0

]
. (6)

4. Subsampling procedure and consistency

In this section we describe the main idea of the sub-
sampling methodology, according to the approach pre-
sented and developed by Politis et al. [30]. We use the
same notation. Initially we assume that the time series
{Xt : t ∈ Z} is governed by unknown probability distri-
bution P , that belongs to a certain class of probability
measures P. Denote by {X1, X2, . . . , Xn} a sample from
the time series {Xt : t ∈ Z}. Our goal is to approximate
the distribution of

υn(θ̂n − θ(P )), (7)

where θ̂n = θ̂n(X1, X2, . . . , Xn) is an estimator of θ(P ),
the parameter of interests, and υn is appropriate normal-
ising sequence. Let b(n) (b for short) be any sequence
of integer numbers tending to in�nity with n, such that
b < n and b/n→ 0.
One of the main assumption in subsampling method-

ology is that there exists asymptotic distribution of (7).
We denote this distribution by J(P ), with J(x, P ) as a
corresponding cumulative distribution functions at point
x ∈ R. Following the idea of Politis et al. [30] the dis-
tribution of (7) can be approximated by its subsampling
version of the form

Ln,b(x) =
1

n− b+ 1

n−b+11∑
t=1

{υb(θ̂n,b,t − θ̂n) ≤ x}, (8)

where 1{B} is the indicator function of the set B and
θ̂n,b,t = θ̂b(Xt, Xt+1, . . . , Xt+b−1) is an estimator of the
unknown parameter θ(P ) obtained on the basis of the
sample {Xt, Xt+1, . . . , Xt+b−1}, with t as a starting point
and b as a size of subsample. Under suitable regular-
ity conditions it is known that (see [30], Theorem 4.2.1,
page 103):
(i) if x is a continuity point of J(·, P ), then Ln,b(x)

p−→
J(x, P ),
(ii) if J(·, P ) is continuous, then supx∈R |Ln,b(x) −
J(x, P )| p−→ 0,
(iii) if J(·, P ) is continuous at point c(1− α), then

P
(
υn(θ̂n − θ(P )) ≤ cn,b(1− α)

)
→ 1− α, (9)

where for any α ∈ (0, 1), we de�ne

cn,b(1− α) = inf(x : Ln,b(x) ≥ 1− α),
c(1− α) = inf(x : J(x, P ) ≥ 1− α).

The implication (iii) is crucial to construct a subsampling
con�dence interval for the parameter θ(P ).
We are interested in estimation of the absolute value

of coe�cients of the Fourier representation of the mean
of APC process. Namely, we take θ(P ) = |m(ψ)|.
Subsampling procedure, with θ̂n,b,t = |mt−1,b

n (ψ)| and
υn =

√
n, is consistent; see for details [24], Theorem 2.3.

Consequently, the con�dence intervals for the parameter
θ(P ) = |m(ψ)|, obtained by subsampling procedure, are
asymptotically consistent.
Now let us take any ψ0 ∈ (0, π]. The test (4) with

test statistics Πn({ψ}) =
√
n|m̂n(ψ)| and subsampling

critical value are asymptotically consistent. In our pa-
per we prove some modi�cation of this result (see Theo-
rem (8.2) in Appendix). We use test statistics Π̃n({ψ}) =√
n|r̂n(ψ)|, that can be interpreted as a value of test

statistics Πn({ψ}) =
√
n|m̂n(ψ)| based on the sample

{X1 − Xn, X2 − Xn, . . . , Xn − Xn}, where Xn is the
sample mean for the path {X1, X2, . . . , Xn}. The critical
value c̃{ψ}n,b (1 − α) is calculated according to the formula
that utilises subsampling procedure

c̃
{ψ}
n,b (1− α) = inf

(
x : L̃

{ψ}
n,b (x) ≥ 1− α

)
,

L̃
{ψ}
n,b (x) =

1

n− b+ 1

×
n−b+11∑
t=1

{
√
b
(
|r̂t−1,bn (ψ)| − |r̂n(ψ)|

)
≤ x},

where

r̂c,dn (ψ) =
1

dn

cn+dn∑
j=cn+1

(Xj −Xn)e
− iψj

and r̂n(ψ) = r̂0,nn (ψ).

5. Statistical model of cyclical �uctuations

In this section we present the statistical framework
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of extraction of the cyclical component when the one-
-dimensional time series describing changes in economic
activity is observed. In Sect. 5.1 we present basic assump-
tions concerning the model, while in Sect. 5.2 we describe
in detail the algorithm of formal statistical extraction of
business cycle component.

5.1. Model structure and assumptions

Let consider a real-valued time series, denoted by {Pt :
t ∈ Z}. At the beginning of this section we assume that
the unconditional expectation for the process {Pt : t ∈ Z}
exists for any t ∈ Z.
An interesting case that is of particular interest in

econometrics is the class of integrated stochastic pro-
cesses, denoted by I(d) for integration of order d ∈ N.
If we are interested in analysis of I(d) processes in our
framework, some additional assumptions should be im-
posed top assumed the existence of unconditional mo-
ments. In the case when {Pt : t ∈ Z} is I(1) process
it is su�cient to assume additionally that there exists
t0 ∈ Z such that E(Pt0) < ∞. Hence we obtain in this
case that E(Pt) < ∞ for any t ∈ Z. More generally, if
{Pt : t ∈ Z} follows I(d) process, then it is su�cient to
assume that there exists t0 ∈ Z, such that E(Pt0+k) <∞
for k = 0, 1, . . . , d− 1, to assure moment existence. Con-
sequently, we formally exclude in our analysis processes
with pure integration, but some restricted cases, repre-
senting strict nonstationarity with �nite unconditional
mean, may be modelled.
For further analysis we assume that the mean function

µP (t) = E(Pt) is de�ned by the sum of deterministic
function f(t, β), parameterized by β ∈ Rp, and almost
periodic function g(t), with the Fourier expansion of the
form

g(t) =
∑
ψ∈ΨP

mP (ψ)e
iψt. (10)

For convenience, we rewrite g(t) in equivalent represen-
tation

g(t) =
∑

ψ∈ΨP∩[0,π]

aP (ψ) cos(ψt) + bP (ψ) sin(ψt).

This automatically implies that

µP (t) = f(t, β) + g(t) = f(t, β) +
∑
ψ∈ΨP

mP (ψ)e
iψt.

(11)
Equation (11) leads to a more general approach to mod-
elling business �uctuations, than those presented in the
literature so far; see for example [31�35]. The main ad-
vantage of our approach is that it only relies on the speci-
�cation of the �rst moment of the time series {Pt : t ∈ Z},
making model assumptions much weaker. To illustrate
the importance of our assumptions and generalisation we
present an example below.
Example 5.1. Let {Pt : t ∈ Z} be a time series such

that Pt = Pt−1 + εt, where E(P0) = b and {εt : t ∈ Z}
is APC time series with expectation function µε(·) such
that µε(t) = a + g(t) − g(t − 1), where g : Z → R is a
function of the form

g(t) =
∑
ψ∈Ψ

m(ψ)e iψt,

a ∈ R and card(Ψ) < ∞. Notice that for any t ≥ 1 we
have

Pt = P0 + ε1 + ε2 + . . .+ εt.

Therefore

E(Pt) = b+

t∑
j=1

E(εj)

= b+ at− g(0) + g(t) = f(t, β) + g(t),

where f(t, β) = β0 + β1t, β0 = b − g(0), β1 = a. This
means that time series {Pt : t ∈ Z} can be represented
as (11). If g(t) ≡ 0, then µε(t) = a, and time series
{Pt : t ∈ Z} can be interpreted as I(1) process with drift
and assumption E(P0) = b.
The function f(t, β) can be interpreted as a trend com-

ponent, modelled in this paper by the polynomial. The
function g(t) contains summarised information about
seasonal �uctuations, business �uctuations and long-
-term cyclical �uctuations. From the Fourier represen-
tation of g(t) we split the whole set ΨP of non-zero fre-
quencies into the mutually exclusive sets that are related
to those three periodic attributes of time series dynam-
ics. Initially, we interpret long-term cyclical �uctuations
as those with the length more than 8 years, since the fre-
quency ω is related to the length of cycle that equals 2π/ω
units. In order to distinguish cyclical �uctuations from
seasonal �uctuations we assume formally that in the rep-
resentation (10) the set ΨP = {ψ : m(ψ) 6= 0} ⊂ [0, 2π)
is unknown. For the set ΨP , let us consider the following
decomposition:

ΨP = ΨP,1 ∪ΨP,2 ∪ΨP,3. (12)
We assume that ΨP,1∩(0, 0.35) = ΨP,1, and consequently
the set ΨP,1 represents all frequencies with correspond-
ing length of the cycle greater than 17 months. Therefore
the set ΨP,1 contains frequencies that can describe busi-
ness �uctuations. The set ΨP,2 contains only seasonal
frequencies, namely ΨP,2 ⊂ {2kπ/12 : k = 0, 1, . . . , 11}
while ΨP,3 contains all remaining frequencies. In the fol-
lowing section we concentrate our attention only to pa-
rameter identi�cation and estimation in the set ΨP,1.

5.2. Cycle identi�cation and estimation

Our approach aims at identi�cation and estimation of
cyclical �uctuations. In order to remove trend compo-
nent and to weaken seasonal e�ects, observed time series
is subject to some preliminary transformations. Hence,
we formulate the algorithm of frequency identi�cation
that consists of three basic steps. The �rst step enables
to remove seasonal component, the second step detects
the trend component, while in the third step, parameter
identi�cation and estimation is provided.
Step 1 � removing the seasonal component.

Seasonality appears in most monthly economic time se-
ries. More formally, we allow (it is assumed), that
ΨP ∩ {2kπ/12 : k = 1, 2, . . . , 11} 6= ∅. Since, the esti-
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mation of the frequencies and corresponding Fourier co-
e�cients that represent seasonal frequencies is not of par-
ticular importance in our paper, we use centered moving
average �lter 2×12 MA (see [36, 37]) to remove seasonal
pattern. We show below that this �lter does not change
the elements of the set ΨP,1, which is crucial for future
estimation procedure. Denote by {Yt : t ∈ Z} time series
obtained by application of the centered moving average
�lter. It means that Yt = L2×12(B)Pt, where

L2×12(B) = (B−6 + 2B−5 + . . .+ 2B−1 + 2 + 2B+

. . .+ 2B5 +B6)/24,

and BkPt = Pt−k for any t and k. Let us note that the
expectation of the time series {Yt : t ∈ Z} exists. On the
basis of Theorem 8.1 and elementary calculations we get

µY (t) = E(Yt) = β̃0 + β̃1t+ . . .+ β̃pt
p︸ ︷︷ ︸

f̃(t,β̃)

+
∑
ψ∈ΨY

mY (ψ)e
iψt, (13)

where ΨY ∩ {2kπ/12 : k = 1, 2, . . . , 11} = ∅, ΨY =

ΨP \ {2kπ/12 : k = 1, 2, . . . , 11} and f̃ is a function.
The Fourier coe�cients mP (ψ) and mY (ψ) are related
according to the formula

mY (ψ) = L2×12(e
− iψ)mP (ψ). (14)

Notice that f̃(t, β̃) is also a polynomial of order p. In par-
ticular, for s ∈ {p−1, p} we have β̃s = βs. Consequently,
given model with p = 0 or p = 1 (i.e. constant or linear
trend) we have that f̃(t, β̃) ≡ f(t, β). In case p = 2 func-
tions f̃ and f have di�erent values, but f̃(t, β̃)−f(t, β) is
constant over time. Additionally, �ltering the series with
centered moving average operator, we obtain that

ΨY ∩ (0, 0.35) = ΨP,1

and

ΨY ∩ΨP,2 = ∅,

which means that the set ΨY still contains the same ele-
ments as ΨP,1 and does not contain seasonal frequencies
from the set ΨP,2.
Step 2 � removing the trend component. The

case when p = 0 is trivial. Let consider the case p = 1.
Application of di�erence operator L1(B) = 1−B for the
time series {Yt : t ∈ Z} results with time series {Xt : t ∈
Z}:

Xt = L1(B)Yt = Yt − Yt−1
= (Pt+6 − Pt−5 + Pt+5 − Pt−6)/24.

The expectation of the time series {Xt : t ∈ Z} exists
and is described by almost periodic function of the form

µX(t) = β1 +
∑
ψ∈ΨX

mX(ψ)e iψt, (15)

where

ΨX ⊂ {0} ∪ΨP \ {2kπ/12 : k = 1, 2, . . . , 11}, (16)
and

ΨX ∩ (0, 0.35) = ΨP,1, (17)
which follows from Theorem 8.1. Additionally, we have

mX(ψ) = L1(e
− iψ)mY (ψ)

= L1(e
− iψ)L2×12(e

− iψ)mP (ψ) (18)
and Assumption 8.1 holds.
In the general case, when p ∈ N we use natural op-

erator Lp(B) = (1 − B)p. The resulting time series
{Xt : t ∈ Z} can be represented by the following trans-
formation of Yt:

Xt = (1−B)pYt,

and hence, the expectation of Xt takes the form

E(Xt) = µX(t) = p!βp +
∑
ψ∈ΨX

mX(ψ)e iψt, (19)

where, according to Theorem 8.1

mX(ψ) = Lp(e
− iψ)mY (ψ)

= Lp(e
− iψ)L2×12(e

− iψ)mP (ψ). (20)
By estimation |Lp(e− iψ)L2×12(e

− iψ)| > 0, which is true
for any p ∈ N and ψ ∈ (0, 0.35), we have

ΨX ∩ (0, 0.35) = ΨP,1. (21)
Therefore the problem of parameter identi�cation and es-
timation in the set ΨP,1 reduce to the problem of parame-
ter identi�cation and estimation in the set ΨX ∩(0, 0.35).
Step 3 � parameter identi�cation and estima-

tion. The formula (21) is crucial in the algorithm of pa-
rameter identi�cation and estimation in the set ΨP,1. Ini-
tially, in Step 3 we formulate the additional assumption
that the autocovariace function of time series {Xt : t ∈
Z} exists and it is almost periodic function. Notice that
the weaker assumption concerning periodic structure of
autocovariance function appears in the literature con-
cerning analysis of economic time series; see for example
[7�10, 12, 14]. We use statistics Π̃n({ψ}) =

√
n|r̂n(ψ)|

and corresponding critical value c̃n,b(0.99%) for the series
generated from the previous steps of the algorithm. The
test statistics Π̃n({ψ}) can be interpreted as a value of
test statistics Πn({ψ}) =

√
n|m̂n(ψ)| based on the sam-

ple {X1−Xn, X2−Xn, . . . , Xn−Xn}, where Xn is the
sample mean for the path {X1, X2, . . . , Xn}. The critical
value is calculated according to the formula that utilises
subsampling procedure presented in [30]:

g̃
{ψ}
n,b (1− α) = inf

(
x : G̃

{ψ}
n,b (x) ≥ 1− α

)
,

where

G̃
{ψ}
n,b (x) =

1

n− b+ 1

n−b+11∑
t=1

{√
b|r̂t−1,bn (ψ)| ≤ x

}
.

We �x b = 2.5
√
n and we calculate test statistics and

corresponding critical value for ψ from the discrete set
of frequencies on the interval (0, 0.35). If the value of
test statistics is greater than the critical value on some
subinterval I ⊂ (0, 0.35) we take this subinterval as the
interval containing some elements of the set ΨP,1. Next,
we estimate the frequency connected with subinterval I
using (6). By plug in technique we estimate amplitude
related to each identi�ed frequency in almost periodic
part of the mean function of the process {Pt : t ∈ Z}.
In our algorithm step 3 is fundamental in procedure of
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extraction business cycle component from the observed
time series. Its main advantage is that the frequencies
describing the cyclical dynamics of economic activity are
subject to formal statistical inference. This clearly dis-
tinguishes our approach from many other procedures pre-
sented in the literature, where the lack of statistical un-
certainty in the procedure is very common and forces
ad hoc approach; see for example polemics concerning
detrending in [38] and [39].
However, it is very important that the procedure yields

only statistically signi�cant frequencies, and extraction of
the business cycle is subject to additional �ltering. In the
empirical part of the paper we use the Hodrick�Prescott
(HP) �lter (see [40]), with smoothness parameter λ. Ac-
cording to [41�43] parameter λ can be described as the
argument of frequency ψ0:

λ =
1

4[1− cos(ψ0)]2
, (22)

where 2π/ψ0 can be interpret as a length of the cy-
cle. Hence, on the basis of our procedure, it is possible
to choose appropriate parameter λ of the HP �lter, re-
stricting spectrum only to signi�cant parameters in the
set ΨP,1. Alternatively it is possible to apply any �lter
in cycle extraction. We choose the simplest HP �lter for
illustrative purposes.

6. Empirical illustration

In this part of the paper we analyse cyclical behaviour
of production sector in Poland. In particular we apply
our model and three step procedure in order to charac-
terise business cycles in industrial production index and
some subsector indices.

Fig. 1. (a) Industrial production index in Poland
(2005 year = 100%) from January 1995 to December
2009; (b) realization of centered moving average �lter
2×12 MA applied for industrial production index in
Poland.

Fig. 2. (a) First di�erence of centered moving average
�lter 2×12 MA applied for industrial production index;
(b) �rst di�erence of centered moving average �lter 2×
12 MA applied for logarithm of industrial production
index.

Figure 1a presents time series of industrial produc-
tion index† in Poland from January 1995 to December
2009 (2005 year = 100%). This index contains: min-
ing and quarrying; manufacturing; electricity, gas, steam
and air conditioning supply. In the �rst step we applied
centered moving average �lter 2×12 MA to eliminate
strong seasonal e�ects. The results of �ltering is plot-
ted in Fig. 1b. It is clear that centered moving average
�lter removes the seasonal e�ects and also business �uc-
tuations are clearly observable (see Fig. 1b).

According to our algorithm, presented in previous sec-
tions, we present in Fig. 2a �rst di�erences of the cen-
tered moving average �lter applied for industrial produc-
tion index. We see some evidence about the existence
of cyclical behavior in time series under consideration.
The amplitude of cycle does not seem to be constant
over time. Also, the amplitude is smaller in period 1995�
2001, while after year 2001 is characterized by greater
variability. Therefore we use logarithm transformation
for industrial production index to stabilize the amplitude.
Figure 2b presents the �rst di�erence of centered moving
average �lter applied for logarithm of industrial produc-
tion index. It is easy to see that the amplitude is more
constant over time than before logarithm transformation.

Figure 3 presents plots of the values of the test statis-
tics Π̃n({ψ}) =

√
n|r̂n(ψ)| with corresponding critical

value c̃n,b (0.99%). The test statistics exceeds the criti-
cal value in three subsets on the interval (0, 0.35). Hence,
taking care only of signi�cant values of test statistic in
Fig. 3 and in zoom in Fig. 4, we assume that

†Source: Eurostat.
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Fig. 3. Frequency identi�cation using statistics
Π̃n({ψ}) =

√
n|r̂n(ψ)| and corresponding critical

value c̃n,b (0.99%) for the realization of time se-
ries {Xt : t ∈ Z}: continuous line � the value

of test statistics Π̃n({ψ}) =
√
n|r̂n(ψ)| for ψ from

the set {(k − 1)π/720: k = 1, 2, . . . , 720}; dashed

line � critical value c̃
{ψ}
n,b (99%) for ψ from the set

{(k − 1)π/720: k = 1, 2, . . . , 720}.

ΨP,1 ∩ (0, 0.35) = {ψ1, ψ2, ψ3}. (23)
The values of estimated frequencies from the set ΨP,1
were calculated according to (6). These values with cor-
responding length of the cycle can be found in Table I.
Estimated amplitude of the cycle with corresponding

length 8.5 and 3.4 years equal 0.13 and 0.07, respectively.

This second amplitude dominates the estimated value of
amplitude with corresponding length 2 years. We see
that 8.5-year length of the cycle received data support.
However we cannot formally interpret such �uctuations
as a long-term growth trend or business �uctuations. We
should rather look at these �uctuations as a mixture of
both long-term growth trend and business �uctuations.
Consequently and unquestionable, the dataset support
�uctuations with corresponding length 3.4 years as a ba-
sic characteristic of business cycle in industrial produc-
tion in Poland. To con�rm this statement we extract
cyclical �uctuations from industrial production index (�l-
tered by centered moving average �lter 2×12 MA ) with
the use of HP �lter condition to the values of parameter
λ �xed for λ = 5500, λ = 12000, λ = 32000, λ = 55000.
The results are plotted in Fig. 5. By restricting parame-
ter λ to values stated above, according to the formula 22,
we extract �uctuations with the length not greater than
4.5, 5.5, 7 and 8 years, respectively. Since our goal was
to extract only business �uctuations without signi�cant
in�uence of long-term growth trend, we restrict �ltering
only to �uctuations with corresponding length shorter
than 8 years.

TABLE I

Estimated frequencies with corresponding length of the cycle for industry production index in
Poland.

The value of frequency estimator ψ̂n,1 = 0.062 ψ̂n,2 = 0.153 ψ̂n,3 = 0.258

Corresponding length of the cycle (in years) 8.5 3.4 2

TABLE II

Expansions and recessions in industrial production index in Poland in the period July 1995 � June 2009.

Expansion . . . �Dec. 97 Feb. 99�May 00 Sept. 02�Mar. 04 Jun. 05�Jan. 08 Apr. 09�. . .

Recession Dec. 97�Feb. 99 May 00�Sept. 02 Mar. 04�Jun. 05 Jan. 08�Apr. 09

Analysing plots presented in Fig. 5 it is possible to
con�rm the presence of cycles in industrial production in
Poland with estimated length in the interval 3�4 years
(during the period 1995�2009). In Table II we deter-
mined the periods of recessions and expansions in indus-
trial production. We interpret turning points as margins
of this periods. In most cases the recession is shorter
than expansion. Consequently, our analysis con�rms re-
sults discussed in the literature that business cycle in
industrial production for Poland displays asymmetric be-
haviour. Also, the business cycle troughs are rather
sharper than peaks, which is also typical for business cy-
cles; see [44, 45].

In the next step we provide a more detailed analysis
based on a formal identi�cation of business cycles in sec-
tors and subsectors of industrial production in Poland.
We use the same statistical tools as for the total indus-
trial production index. We considered all categories iden-
ti�ed for industrial production. The set of all modelled

indices are presented in Table III.

Figure 6 presents plots of logarithms of all considered
indices. Repeating the procedure, initially applied for
the total index, we use centered moving average �lter
2×12 MA to remove seasonal e�ect from the data sets
(see Fig. 7). First di�erences are presented in Fig. 8. It is
clear that majority of indices exemplify cyclical pattern,
just like in the case of index of total production, but
with rather di�erential amplitudes and length. To iden-
tify frequencies in the unknown set ΨP,1 we applied again
the test statistic Π̃n({ψ}) =

√
n|r̂n(ψ)| and correspond-

ing critical value c̃{ψ}n,b (α). The results are presented in
Figs. 9 and 10, where we plotted estimated lengths of the
cycles together with appropriate estimated amplitude. In
di�erent sectors and subsectors of industrial production
the data provide evidence in favour of cycles with length
in the interval 1.5�3 years. However, those cycles are
characterized by much shorter estimated amplitude than
the cycles with length in the interval 3�4 years. The
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Fig. 4. Frequency identi�cation (in the set ΨP,1) and
corresponding amplitude estimation: (a) the value

of test statistics Π̃n({ψ}) =
√
n|r̂n(ψ)| (continuous

line) and critical value c̃
{ψ}
n,b (α) (dashed line) for α ∈

{92%, 95%, 99%} and ψ from the set {(k−1)π/720: k =
1, 2, . . . , 100}; (b) estimated amplitude corresponding to
estimated frequencies from the set ΨP,1: X � estimated
length of the cycle, Y � estimated amplitude.

Fig. 5. Business cycle in industrial production after
logarithm and application of centered moving average
�lter extracted by HP �lter for λ = 5500 (continuous
line), λ = 12000 (dotted line), λ = 32000 (dotted and
dashed line), λ = 55000 (dashed line).

cycles with estimated length in the interval 3�4 years
were supported in predominant set of subindices, only
in the case of manufacture, food products and beverages
(C10_C11), manufacture of basic pharmaceutical prod-
ucts and pharmaceutical preparations (C21) and electric-
ity, gas, steam and air conditioning supply (D).
We see that the largest estimated amplitude charac-

terizes cycles with the corresponding length of more than
4 years. But only in a few cases the cycles with length
5�8 years were supported. It can be seen clearly in
Fig. 11, where the comparison of all identi�ed cycles for
all 32 indices is presented.

TABLE III

Categorised indices describing changes in economic activity
in sectors and subsectors of industrial production in Poland.

B-D_F�Mining and quarrying; manufacturing; electric-
ity, gas, steam and air conditioning supply; construction

MIG_ING_CAG�MIG Intermediate and capital goods

MIG_ING�MIG � MIG � Intermediate goods

MIG_CAG � Capital goods

MIG_DCOG � MIG � Durable consumer goods

MIG_NDCOG � MIG � Non-durable consumer goods

B � Mining and quarrying

C � Manufacturing

C10-C12 � Manufacture of food products; beverages and
tobacco products

C10_C11 � Manufacture of food products and beverages

C10 � Manufacture of food products

C11 � Manufacture of beverages

C12 � Manufacture of tobacco products

C13_C14 � Manufacture of textiles and wearing apparel

C15 � Manufacture of leather and related products

C16 � Manufacture of wood and of products of wood and
cork, except furniture; manufacture of articles of straw
and plaiting materials

C17 � Manufacture of paper and paper products

C18 � Printing and reproduction of recorded media

C19 � Manufacture of coke and re�ned petroleum
products

C20 � Manufacture of chemicals and chemical products

C21 �Manufacture of basic pharmaceutical products and
pharmaceutical preparations

C22 � Manufacture of rubber and plastic products

C23 � Manufacture of other non-metallic mineral
products

C24 � Manufacture of basic metals

C25 � Manufacture of fabricated metal products, except
machinery and equipment

C26 � Manufacture of computer, electronic and optical
products

C27 � Manufacture of electrical equipment

C28 � Manufacture of machinery and equipment ncan
n.e.c.

C29 � Manufacture of motor vehicles, trailers and semi-
trailers

C29_C30 � Manufacture of motor vehicles, trailers,
semi-trailers and of other transport equipment

C31 � Manufacture of furniture; other manufacturing

D � Electricity, gas, steam and air conditioning supply

In spite of the fact that observed time series were sub-
ject to �ltering with the use of centered moving average
�lter 2×12 MA, all investigated subindices provide data
support in favour of the existence of cycles with length
not greater than two years. However, as seen in Fig. 11,
those short cycles are characterized by amplitudes with
values located relatively close to zero, as compared with
longer signi�cant cycles. This makes such a short term
periodic pattern not extremely important in describing
cyclical behaviour of modelled time series. Additionally,
all indices support cycles of length 3�4 years, with rela-
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Fig. 11. Length of the cycles and amplitudes compar-
ison: X � the index number, Y � estimated length of
the cycle, Z � estimated amplitude.

tively greater value of corresponding amplitudes as com-
pared to characteristics of short term �uctuations. Also,
except manufacture of wearing apparel (14th index) we
see no data support for cycles with length between 4 and
7 years. Consequently, for all considered subindices, the
set of statistically signi�cant cycles is clearly divided in
two separate parts. The �rst set is constituted by short
term cycles with small amplitudes together with middle
term �uctuations, attributed in most cases by stronger
amplitudes. The second set consists of frequencies, de-
scribing long term cycle, namely with length not less than
7 years. Just like in case of the total production index,
we tend not to interpret those long term �uctuations
as important characteristic of business cycle for Polish
economy. According to our results, just like for the to-
tal index, all considered subindices are characterized by
existence of the long term trend.
Using HP �lter we extract business cycles from all

industrial production indexes. Similar as for industrial
production index � total we �x the parameter λ as
λ = 5500, λ = 12000, λ = 32000, λ = 55000 (see Fig. 12).
The reasons why we chose those values of λ parameter
are the following. Firstly, we �x the same parameter to
compare results with those obtained for industrial pro-
duction index. Secondly, the length of the cycle that is
greater than 8 years is not clearly constant over di�er-
ent subindices and therefore we cannot interpret those
�uctuations as business �uctuations. Finally, we can no-
tice that in the interval from 4 to 8 years there are only
a few signi�cant lengths of cycles and this should give
rise to extract similar shape of business �uctuations for
di�erent values of parameter λ. Almost all extracted �uc-
tuations reveal presence of cycles with length in the in-
terval 3�4 years. Summing up, the cycle with length in
the range 3�4 years is typical and prevalent for cyclical
�uctuations in industrial production in Poland.

7. Concluding remarks

In this paper a novel approach in business �uctuations
analysis for one-dimensional economic processes is pro-
posed. Using theory of almost periodically correlated

time series and subsampling procedure we consider a for-
mal approach to estimate the length of business cycles.
The main advantage of our approach is that the busi-
ness cycle characteristics are treated in formal way, and
are subject to statistical inference. This clearly distin-
guishes presented framework from many �ltering-based
approaches, broadly considered in empirical applications.
We model business �uctuations by parameters of discrete
spectra of time series, under assumption that amplitude
of these �uctuations is constant over time. Taking in con-
sideration estimated length of the cycles we extract busi-
ness �uctuations by HP �lter for parameter of smooth-
ness chosen on the basis of formal procedure.
The main conclusion presented in empirical illustra-

tion is that, during period 1995�2009, we con�rm (using
statistical tools) the presence of 3�4 years length of busi-
ness cycle in industrial production index in Poland. This
result was obtained either on the basis of the total in-
dex and also analysing subindices. This result con�rms
analyses conducted so far on the basis of Polish macro-
economic time series; see [46�49].
All indices and subindices supported signi�cance of

short term and middle term �uctuations, attaching rel-
atively small amplitudes for periodicity with length less
than 2 years. Additionally, in all time series we detected
existence of longer term cycle (7�8 years), interpreted in
this paper as a trend or a mixture of both trend and
business cycle �uctuations.

Appendix

Assumption 8.1. Let {Xt : t ∈ Z} be APC time se-
ries such that for any x ∈ [0, 2π) there exists a constant
B(x) (which depends only on x), such that we have esti-
mation∑

ψ∈Ψ\{x}

∣∣∣∣m(ψ)cosec

(
ψ − x
2

)∣∣∣∣ < B(x) <∞. (24)

Theorem 8.1. Let {Xt : t ∈ N} be a time series
for which the expectation function exists and it is al-
most periodic function of the form µX(t) = E(Xt) =∑
ψ∈ΨX mX(ψ)e iψt. We assume that for the set Ψ and

corresponding Fourier coe�cients m(·) Assumption 8.1
holds. Let L(B) =

∑q
j=−p ajB

j be a linear �lter, where

p, q ≥ 0, {aj}qj=−p is a sequence of real numbers, and

BjXt = Xt−j for any j ∈ Z. Then

E(Yt) = µY (t) =
∑
ψ∈ΨY

mY (ψ)e
iψt,

where ΨY = ΨX and mY (ψ) = L(e− iψ)mX(ψ). Addi-
tionally, Assumption 8.1 holds for the set ΨY and corre-
sponding coe�cients mY (·).
Proof. Notice that

E(Yt) = E

 p2∑
j=p1

ajB
jXt

 = E

 p2∑
j=p1

ajXt−j


=

p2∑
j=p1

aj
∑
ψ∈ΨX

mX(ψ)e iψ(t−j)
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=
∑
ψ∈ΨX

mX(ψ)

p2∑
j=p1

aj e
− iψj e iψt

=
∑
ψ∈ΨX

mX(ψ)L(e− iψ)e iψt. (25)

By estimation |mY (ψ)| ≤ |mX(ψ)|
∑p2
j=p1

|aj | we con-
clude that condition 1.1 from [24] holds for the set ΨY
and corresponding Fourier coe�cients mY (·). �
Theorem 8.2. Take any ψ ∈ (0, 2π). Let the assump-

tions of Theorem 2.2 in [24] hold. Then

(i) L̃{ψ}n,b (x)
p→ J{ψ}(x), for any x ∈ R,

(ii) supx∈R |L̃
{ψ}
n,b (x)− J{ψ}(x)|

p−→ 0,
(iii) subsampling con�dence intervals for the parameter
|m(ψ)| are asymptotically consistent, which means that

P
(√
n (|r̂n(ψ)| − |m(ψ)|) ≤ c̃{ψ}n,b (1− α)

)
−→ 1− α, (26)

where b = b(n)→∞ and b/n→ 0.

Proof of Theorem 8.2. In this proof we use the same
steps as in Theorem 4.2.1, page 103 in [30]. Let q =
n− b+ 1, τn =

√
n and

Un(x)

=
1

q

q1∑
t=1

{
τb(|m̂t−1,b

n (ψ)| − |m(ψ)|) ≤ x
}
.

Notice that

L̃
{ψ}
n,b (x) =

1

q

q1∑
t=1

{
τb
[
|m̂t−1,b

n (ψ)| − |m(ψ)|
]

+ τb
[
(|m(ψ)| − |r̂n(ψ)|) + (|r̂t−1,bn (ψ)|

− |m̂t−1,b
n (ψ)|)

]
≤ x

}
.

We need the following lemma.
Lemma 8.1. For any real x and ε > 0 we have esti-

mation

Un(x− ε)1{En} ≤ L̃{ψ}n,b (x)1{En}
≤ Un(x+ ε), (27)

where En = {τbmax1≤t≤q |(|m(ψ)| − |r̂n(ψ)|) +
(|r̂t−1,bn (ψ)| − |m̂t−1,b

n (ψ)|)| ≤ ε}.
Proof. Let consider two cases:

1◦ 1{En} = 0, inequality (27) holds.
2◦ 1{En} = 1, then

τb max
1≤t≤q

|(|m(ψ)| − |r̂n(ψ)|)

+ (|r̂t−1,bn (ψ)| − |m̂t−1,b
n (ψ)|)| ≤ ε,

which means that for any 1 ≤ t ≤ q
ηt−1,bn (ψ) := τb

[
(|m(ψ)| − |r̂n(ψ)|)

+ (|r̂t−1,bn (ψ)| − |m̂t−1,b
n (ψ)|)

]
∈ [−ε, ε].

Using next inequality x−ηt−1,bn (ψ) ≥ x− ε, which is true
for any 1 ≤ t ≤ q we get

1
{
τb
[
|m̂t−1,b

n (ψ)| − |m(ψ)|
]

+ τb
[
(|m(ψ)| − |r̂n(ψ)|)

+ (|r̂t−1,bn (ψ)| − |m̂t−1,b
n (ψ)|)

]
≤ x

}
= 1

{
τb
[
|m̂t−1,b

n (ψ)| − |m(ψ)|
]

≤ x− ηt−1,bn (ψ)
}

≥ 1
{
τb
[
|m̂t−1,b

n (ψ)| − |m(ψ)|
]
≤ x− ε

}
.

(28)
Analogically, using inequality x − ηt−1,bn (ψ) ≤ x + ε we
get

1{τb
[
|m̂t−1,b

n (ψ)| − |m(ψ)|
]

+ τb
[
(|m(ψ)| − |r̂n(ψ)|)

+ (|r̂t−1,bn (ψ)| − |m̂t−1,b
n (ψ)|)

]
≤ x}

= 1{τb
[
|m̂t−1,b

n (ψ)| − |m(ψ)|
]

≤ x− ηt−1,bn (ψ)}

≤ 1{τb
[
|m̂t−1,b

n (ψ)| − |m(ψ)|
]
≤ x+ ε}. (29)

Summing inequality (28), (29) for t = 1, 2, . . . , q we
get (27). This completes the proof of lemma. �

In next step we show that P (En) → 0. Using in-
equality ||z1| − |z2|| ≤ |z1 − z2| (which is true for any
complex numbers z1, z2) and inequality |

∑q
j=p cj e

i jx| ≤
cp|cosec(x/2)| (which is true for any x 6≡ 0 modulo 2π
and real numbers cp ≥ cp+1 ≥ . . . ≥ cq) we have

max
1≤t≤q

|ηt−1,bn (ψ)| ≤ max
1≤t≤q

τb||m(ψ)| − |r̂n(ψ)||

+ max
1≤t≤q

τb||r̂t−1,bn (ψ)| − |m̂t−1,b
n (ψ)||

≤ τb||m(ψ)| − |r̂n(ψ)||

+ max
1≤t≤q

τb|r̂t−1,bn (ψ)− m̂t−1,b
n (ψ)|

≤ τb|m(ψ)− r̂n(ψ)|

+
τb
b
|Xn||cosec(ψ/2)|

≤ τb|m(ψ)− m̂n(ψ)|

+ τb|m̂n(ψ)− r̂n(ψ)|+
τb
b
|Xn||cosec(ψ/2)|

≤ τb|m(ψ)− m̂n(ψ)|+
τb
n
|Xn||cosec(ψ/2)|

+
τb
b
|Xn||cosec(ψ/2)|. (30)

By convergence τb|m(ψ)− m̂n(ψ)|
p→ 0 and τb

b |Xn|
p→ 0

we get

max
1≤t≤q

|ηt−1,bn (ψ)| p→ 0,

which means that P (En) → 1. Using next Slutsky's
Lemma and Theorem 2.1 in [24] we have

√
n(|rt−1,bn (ψ)|−

|m(ψ)|) d→ J{ψ}. To �nish the proof it is su�cient to fol-
low next steps in Theorem 4.2.1, page 103 in [30], there-
fore we omit them. �
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Fig. 6. Logarithm of industrial production indices in Poland (2005 year = 100%) in sectors and subsectors from
January 1995 to February 2010.
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Fig. 7. Realizations of centered moving average �lter 2×12 MA applied for logarithm of industrial production indexes
in Poland in sectors and subsectors.
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Fig. 8. First di�erence for realization of centered moving average �lter 2×12 MA applied for logarithm of industrial
production indexes in sectors and subsectors.
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Fig. 9. Frequency identi�cation (in the set ΨP,1): continuous line � the value of test statistics Π̃n({ψ}) =
√
n|r̂n(ψ)|,

dashed line � critical value c̃
{ψ}
n,b (α) for α ∈ {92%, 95%, 99%} and ψ from the set {(k − 1)π/720: k = 1, 2, . . . , 100}.
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Fig. 10. Estimated amplitude and estimated length of the cycles connected with identi�ed frequencies in the set ΨP,1:
X � estimated length of the cycle, Y � estimated amplitude.
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Fig. 12. Business cycle (extracted by HP �lter) in sectors and subsectors of industrial production after logarithm and
application of centered moving average �lter for λ = 5500 (continuous line), λ = 12000 (dotted line), λ = 32000 (doted
and dashed line), λ = 55000 (dashed line).
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