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Simulations are performed according to the Axelrod model of culture dissemination, with modi�ed mechanism

of repulsion. Previously, repulsion was considered by Radillo-Diaz et al. as dependent on a prede�ned threshold.
Here the probabilities of attraction and repulsion are calculated from the number of cells in the same states. We
also investigate the in�uence of some homogeneity, introduced to the initial state. As the result of the probabilistic
de�nition of repulsion, the ordered state vanishes. A small cluster of a few percent of population is retained only
if in the initial state a set of agents is prepared in the same state. We conclude that the modelled imitation is
successful only with respect to agents, and not only their features.
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1. Introduction

Mathematical metaphors and illustrations of social
phenomena are used in sociology for tens of years [1�4].
Still, an interest in these seminal papers [2�5] has grown
considerably only in last ten years [6]. This phenomenon
can be interpreted in di�erent ways. Certainly, math-
ematical expressions can be impressive, as they seem to
o�er some a priori formalization and logical thinking; this
pretence creates some kind of fashion which was rightly
criticized for a long time [7, 8]. On the other hand, it
is possible that quantitative considerations will give in-
put to our � necessarily permanent � reconstructions of
sociological ideas. This belief cannot be veri�ed within
sciences themselves ([9], p. 19); yet it opened the way
for massive e�orts of scientists to contribute into mathe-
matical and computational sociology. Below we continue
this trend along the direction pointed by Axelrod in his
model of culture dissemination [5].
In accordance with the mathematical trend mentioned

above, �culture� in this model is described as a set of sym-
bols, and human beings (agents) as chains of length F . In
each of chain cells a symbol is written, one out of q pos-
sible values. F and q are model parameters. Agents are
placed in a square lattice, and interact only with their
four nearest neighbours (the von Neumann neighbour-
hood). Probability of an interaction between two agents
is proportional to the number k of chain cells, where both
of them have the same symbols. To give an example, sup-
pose that F = 5, q = 7 and the chains of two neighbours
are: 13245, 23575. In this example, the symbols in sec-
ond and �fth cells of one chain are in the same state
that in the other chain; hence the interaction probability
p = k/F is 2/5. As a consequence of the interaction, the
number k of cells in the same state increases by one [5].
The rationale of the model is as follows. Symbols in chain
cells represent cultural features. Agents who do not share
any feature are supposed to ignore each other. However,
if at least one feature is the same for two neighbouring
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agents, their contact becomes possible and this leads to
a further uni�cation. The so-called active bonds between
neighbours with 0 < p < 1 is the fuel of changes, where
nodes always attract each other in the state space. In the
stationary absorbing state, nearest neighbours are either
identical or completely di�erent.
To explain our motivation, we refer to two papers

along the same direction. In 2000, a phase transition
has been identi�ed in the model [10]. Below some value
of q, say q∗, the system tends to a homogeneous phase,
where all agents are described by the same chains of sym-
bols. For q > q∗, this ordering vanishes. In 2009, a kind
of threshold-dependent repulsion has been introduced to
the model [11]. Namely, the number k of identical cells in
a pair is compared with some threshold γ. Once k > γF ,
the interaction is attractive. However, if k < γF , the
interaction leads to a decrease of k by one; this is equiva-
lent to a repulsion in the state space. As a consequence,
the value of q∗ is strongly reduced. Also, a small (about
2 percent) cluster of agents in the same state is observed
near some q+ well above q∗.
The very idea of repulsion was used recently [13] to

generalize the bounded con�dence model of public opin-
ion [12]. In this model, agents attract in the continuous
space of issues (say, at the plane of safety and welfare), if
their initial positions are closer to each other than some
threshold. The repulsion means that once their distance
along the axis of a leading issue is larger than another
threshold value, their coordinates along the other axis
get di�erent as well [13]. Our position is that in the mul-
tidimensional space of symbols [10], the idea of threshold
ceases signi�cance. Two agents, once they met, have no
time to investigate the states of all their cells. Instead,
they sample one cell, i.e. one feature, and decide on the
basis of acquired information. In other words, they at-
tract with the probability p = k/F and they repulse with
the probability 1−p. Another new element of our work is
that we take into account the initial state. Namely, some
percentage d of chain cells is set to be endowed with the
same symbols. This is done for each positions, 1, . . . , F .
The rate d and the method of this preparation appears
to be relevant for the outcome.
The next section provides algorithmic details of our ap-
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proach, including four di�erent methods of preparation
of initial states. Section 3 is devoted to our numerical
results, an almost complete destruction of the homoge-
neous state being the most important. Final conclusions
� with an attempt to interpret the results within the
phenomenon of fashion � are given in the last section.

2. Calculations
Agents are placed at nodes of a square lattice L × L,

with periodic boundary conditions. Each agent is en-
dowed with a chain of F cells, with a symbol placed at
each cell. Symbols can take one of q values. Initially,
the values of all symbols can be set randomly, with uni-
form probability. Alternatively, the initial state can be
prepared as follows. For each cell i = 1, . . . , F , we �nd
the symbol value Xi which appears in this cell most fre-
quently. Then we select randomly dL2 agents and we
overwrite Xi at their i-th cells. This procedure intro-
duced d as an additional parameter of the model. Here
we apply four methods:
A1. For each cell i, agents where the cell is overwritten

are selected separately and randomly.
A2. For each cell i, a lattice node is selected separately.

Agents where the cell is overwritten are selected as close
to this node as possible.
B1. A set of agents is selected randomly, and their all

cells are overwritten.
B2. A node is selected randomly. All overwritten cells

belong to agents as close to the selected node as possible.
The simulation is performed as follows. At each time

step, a pair of neighbouring agents is selected randomly.
One by one, the values of their symbols in the respective
cells are compared. The probability p of attractive in-
teraction is set to k/F , where k is the number of cases
where the same symbols are found for both agents in the
same cell. In the case of attraction, a cell is found where
symbols for the agents are di�erent, and the value from
one agents is copied for another agent. In this way, k for
this pair of agents is increased by one. If the interaction
is not attractive, it is repulsive. This means that k is
reduced by one with probability 1− k/F . Namely, a cell
is found where symbols for the agents are the same, and
the symbol at this cell is changed for one agent of the
pair.

3. Results
The results presented below are obtained for L = 50

and F = 10. They are con�rmed by less complete cal-
culations for L = 32, F = 10. For a comparison, a set
of calculations are performed also for the case without
repulsion. In this case the interaction is either attractive
(with probability k/F ) or has no consequences. We start
with the results without repulsion. They do depend on
d and on the method of preparation of the initial state.
These results are shown in Fig. 1a�d. As we see, for
d = 0 the ordered (homogeneous) state appears below
q = 50. This agrees with the result in Fig. 2 of [14] with-
out noise. Further, when A1 or A2 is applied, the same
ordered state appears for q < 50 for all values of d; for
larger q, d > 0.1 (A1) or d > 0.25 (A2) is large enough to

ensure full ordering. In other words, prepared order does
not reduce order. This natural result is not necessarily
true for B1 and B2. There, ordering is weakened already
for q > 30 (B1) or q > 40 (B2) if d > 0.4.

Fig. 1. The size max of the maximal cluster against
the percentage d of modi�ed nodes for di�erent values
of the parameter q, for the four options (a) A1, (b) A2,
(c) B1, and (d) B2 of preparation of initial state. The
calculations are made for the case without repulsion.
When the repulsion is turned on, the results are com-

pletely di�erent. First of all, the ordered phase disap-
pears for all values of q and d, except the trivial case
d = 1. Both when A1 and A2 are applied, the size of the
maximal cluster does not exceed 0.002 (�ve nodes) even
for d = 0.95. Basically, the ordered phase never appears
also for the procedures B1 and B2. However, for B1 we
observe a maximal cluster with a maximum near d = 0.5,
which increases from about 0.005 (10 nodes) for q = 10
to about 0.02 (50 nodes) for q = 80. With B2, a similar
but more fuzzy maximum of the maximal cluster of the
same order is found for much larger q (near 200). The
results for B1 and B2 are shown in Fig. 2.

In [14], the disordered phase has been found to be un-
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Fig. 2. As in Fig. 1, but for the case with repulsion.

stable with respect to noise. There, the noise was intro-
duced as a random modi�cation of the frozen state with
low probability r. To test the stability of our results with
respect to this kind of noise, we repeated the calculations
for the case B1 with repulsion, as in Fig. 2C. The results
are shown in Fig. 3. As we see, in our case the disorder
is not in�uenced by the noise.

To get some insight into these results, we inspected
also the time dependence of the number of active bonds.
In general, two kinds of curves are obtained, depending
on if the initial state is near or far to the �nal absorbing
state. As a rule, the latter option is characterized by a
clear increase of the number of active bonds after some
transient time. However, sometimes it happens that �
seemingly by chance � the absorbing state is found be-
fore the above mentioned increase. Once the number of
active bonds reaches zero, the system cannot evolve any-
more. Such a metastable absorbing state may occur when
repulsive interaction is present or not, and when the �-
nal state is ordered state or not. Examples are shown in
Fig. 4a and b.

Fig. 3. The size max of the maximal cluster against
the percentage d of modi�ed nodes for q = 50 without
and with noise � dots and crosses, respectively. The
noise is added according to the prescription in [14], for
the noise intensity r = 10−5. According to [14], this
value of r should restore the homogeneous phase.

Fig. 4. Time dependence of the number # of active
bonds for the case (a) without repulsion, d = 0, option
B2, and (b) with repulsion, d = 0.2, option B2. In both
cases, most trajectories show a maximum due to the
change of the size max of the largest cluster. However,
in both cases it is possible that the trajectory happens
to be blocked in an absorbing state wheremax is close to
its initial value. In the pictures above, (a) one trajectory
ends at max = 0.1 while the remaining nine trajectories
end with max > 0.9, (b) two trajectories end at max =
0.2 while the remaining eight trajectories end at max <
0.002. These exceptional trajectories are shown in the
insets.

4. Discussion

The most important result is that in its proposed form,
the repulsion destroys the ordered phase. This result
can be interpreted in two ways, as negative (�divided we
fall� [15]) or positive (�diversity is preserved� [16]). In any
case, our results indicate that the details of the repulsion
mechanism do matter. This is seen when we compare our
results with those of [11], where the decision to attract
or to repulse was dependent on a prescribed threshold γ.
Namely, if k/F < γ, the interaction was repulsive. This
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kind of interaction is less stochastic in the sense that
the decision does not rely on any probability. We note
that in [11], the ordered phase was preserved for small q.
In our model of repulsion, this ordered phase does not
appear.
There is still some correspondence between the results

for these two mechanisms of repulsion. Namely, a small
ordered cluster was found in [11] which appears above
the threshold q∗. Its size reported was the largest for
the threshold γ = 0.2, but it was not more than 0.02L2.
This e�ect is similar to ours, with an important di�er-
ence that the maximum found by us does not decrease
with q and appears only for partial initial ordering. It
seems that the origin of the maximum is combinatorial
in both models. Driven by the subject of the Axelrod
model, we are tempted to search its analogy in cultural
world. According to the seminal paper [5], one of possible
applications of the symbols is fashion. Voting for this op-
tion, we are willing to interpret cells as details of dress, as
tie, glasses, shoes or handbag. This interpretation makes
large values of q (even one hundred!) understandable.
Also, we can agree that the largest cluster of the order of
two percent of the interacting population is realistic. On
the contrary, the interpretation of languages, mentioned
in [10], seems not appropriate, as nowhere in the world
we have �fty languages as equivalent options.
As we remarked in Introduction, it seems to us that

the version of repulsion proposed by us is more close to a
sociological reality, than a mechanism which depends on
a pre-de�ned threshold [11]. Our second modi�cation �
a generalization of the model � is to prepare an initial
state. We believe that a perfectly disordered society does
not exist, and if it does, the nature of this disorder is not
interesting for social sciences. Driven by this belief, we
made the generalization in four di�erent ways. The re-
sults are puzzling in the sense that the most interesting
e�ect � the small cluster � is present for options B1 and
B2, and neither for A1, nor for A2. This means that the
spatial distribution of the initially modi�ed nodes is not
relevant. This is odd, when we remember that the inter-
action range is limited to the nearest neighbours. What
is relevant is the concentration of agents with modi�ed
cells.
This result, when translated to sociological reality,

reads that fashion is a result of imitation agents, and not
their particular feature. The e�ect is not di�cult to be
recognized in real world. Imitation concerns particular
persons, who for various reasons play the role of models
of fashion, from Angelina Jolie to Marie Antoinette and
presumably earlier. In other words, traits in clothes and
style of behaviour have never been distributed among
di�erent idols and heroes; to imitate, we need a whole
person. What is puzzling is that this e�ect has also a
combinatorial aspect. Indeed, it is only this aspect of
culture which can be captured in the Axelrod model.
It would be desirable to compare our results with some

quantitative data. However, the same e�ect appears as
an obstacle. The data as for example on clothes [17�19]

contain the time dependence of the mean values of skirt
length. What is needed here is rather an evaluation, how
many American women did their hair as Gibson girls [20]
at the beginning of XX century? Or, how many women
in 50's did �t to the model of all-American girl, as por-
trayed [21] by Wright Mills? Presumably these criteria
are too fuzzy to allow for comparisons. The order of mag-
nitude obtained above, i.e. a few percent, at least does
not shatter our common sense.
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