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We found a uni�ed formula for description of the household incomes of all society classes, for instance, of
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1. Introduction

In study of socio-economical systems, physics oriented
approaches have widely been developed to explain dif-
ferent socio-economic processes [1�8]. Those approaches
aim at formulating well �tted unbiased indicators of so-
cial and economic phenomena. One of their key issues is
the income of society analysis using methods of statisti-
cal physics, in particular, the stochastic dynamics con-
sidered as ab initio level. The main goal of this economic
issue is to unravel and describe mechanisms of societies'
enrichment or impoverishment.
In the recent decade, a large number of studies were

performed aiming at constructing of models, which (to
some extent) would well replicate the observed com-
plementary cumulative distribution functions of individ-
ual incomes. Among them, the most signi�cant seems
to be the Clementi�Matteo�Gallegati�Kaniadakis ap-
proach [9], the generalized Lotka�Volterra model [4�6],
the Boltzmann�Gibbs law [10�13], and the Yakovenko
et al. model [2, 3]. However, none of the above attempts
to �nd an analytical description of the income structure
solves the principal challenges, which concern:

(i) the description of the annual household incomes of
all society classes (including the third, i.e. the high-
-income society class) by a single uni�ed formula
based on the ab initio level and

(ii) the problem regarding corresponding complete mi-
croscopic (microeconomic) mechanism responsible
for the income structure and dynamics.

In our considerations presented herein, we used the
Boltzmann�Gibbs law, weak Pareto law and Yakovenko
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et al. model to derive a uniform analytical formula de-
scribing all three society classes.

2. Extended Yakovenko et al. model

In accord with an e�ort outlined above, we compared
the empirical data of the annual household incomes in
the European Union (EU), including Norway and Ice-
land, with predictions of our theoretical approach pro-
posed herein. This approach is directly inspired by the
Yakovenko et al. model. By using the generalised as-
sumptions we extended this model to solve our principal
challenges (i) and (ii) indicated above.
We used data records from the Eurostat Survey on In-

come and Living Conditions (EU-SILC) [14], by way of
example for year 2007 [15] (containing around 200 thou-
sand empirical data points). However, these records con-
tain only few data points concerning the high-income so-
ciety class, i.e. the third region in the plot of the comple-
mentary cumulative probability distribution function vs.
annual household income. To consider the high-income
society class systematically, we additionally analysed the
e�ective income of billionaires†,‡ in the EU by using the
Forbes �The World's Billionaires� rank [16].
We were able to consider incomes of three society

classes thanks to the following procedure.

(i) Firstly, we selected EU billionaires' wealth from the
Forbes rank, for instance, for two successive years
2006 and 2007.

†The term �billionaire� used herein is equivalent (as in the US
terminology) to the term �multimillionaire� used in the European
terminology. Since we consider wealth and income of billionaires
in euros, we recalculated US dollars to euros by using the mean
exchange rate at the day of construction of the Forbes �The World's
Billionaires�.
‡The billionaires who gained e�ective incomes are billionaires

whose incomes are greater than zero.
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(ii) Secondly, we calculated their incomes for year 2007.
This calculation was possible because we assumed
that billionaires' incomes were proportional to the
corresponding di�erences between their wealth for
pair of successive years, here 2007 and 2006. No-
tably, we took into account only billionaires who
gained e�ective incomes.

(iii) Subsequently, having calculated incomes for the
high-income society class, we joined them with
the EU-SILC dataset. By using so completed
dataset, we then constructed the initial empiri-
cal complementary cumulative distribution func-
tion for year 2007. For that, we used the well
known Weibull recipe [17, 18]. However, this direct
approach shows a wide gap of incomes inside the
high-income society class resulting in a horizontal
line of the complementary cumulative distribution
function. This gap separates the �rst segment be-
longing to the high-income society class, consisting
of all data points taken from the EU-SILC dataset,
from the second segment, consisting of remaining
data points, which also belong to the high-income
society class but are taken from the Forbes dataset.

(iv) In the �nal step, we eliminated this gap by adopt-
ing the assumption that the empirical complemen-
tary cumulative distribution function (concerning
the whole society) have no horizontal segments.
That is, we assumed that statistics of incomes is
a continuous function of income (i.e. it has no dis-
ruption). Hence, we were forced to multiply the bil-
lionaire incomes from Forbes dataset by the prop-
erly chosen common proportionality factor. This
factor was equal to 1.0 × 10−2, as we assumed the
requirement of full overlap of the �rst (above men-
tioned) segment by the second segment. This as-
sumption leads to a unique solution (up to some
negligible statistical error) for this proportionality
factor. We found that this factor was only a slowly-
-varying function of time (or years).

Hence, we received data record containing already a
su�cient number of data points for all society classes,
including the high-income society class. Although the
Forbes empirical data only roughly estimate the wealth
of billionaires, they quite well establish the billionaires'
rank, thus su�ciently justifying our approach. This is
because our purpose is to classify billionaires to concrete
universality class rather than �nding their total incomes.
The basic tool of our analysis is an empirical comple-

mentary cumulative distribution function being typical
in this context. We calculated it according to the stan-
dard two-step procedure based on the well knownWeibull
formula [17, 18]. The complementary cumulative distri-
bution function obtained that way is su�ciently stable
and it does not reduce the size of the output compared
to that of the original empirical data record.
Let m be an in�ux of income per unit time to a given

household. We treat m as a variable obeying stochastic

dynamics. Then, we can describe its time evolution by
using the nonlinear Langevin stochastic dynamics equa-
tion [2, 3, 19]. Hence, this Langevin equation is equiv-
alent to the following Fokker�Planck equation for the
probability distribution function (in the Itô representa-
tion) [19]:

∂

∂t
P (m, t)

=
∂

∂m
[A(m)P (m, t)] +

∂2

∂m2
[B(m)P (m, t)] . (1)

Here, A(m) is a drift coe�cient and B(m) = C2(m)/2,
where the coe�cient C(m) is them-dependent amplitude
of a temporal white noise; they together play a fundamen-
tal role in the Langevin equation as a stochastic force.
The quantity P (m, t) is the temporal income distribu-
tion function. In general, coe�cients A(m) and B(m)
can be additionally determined by the �rst and second
moment of the income change per unit time, respectively,
only if these moments exist. Subsequently, the equilib-
rium solution of Eq. (1), Peq, takes the form

Peq(m) =
const

B(m)
exp

(
−
∫ m

minit

A(m′)

B(m′)
dm′

)
, (2)

where minit is the lowest household income and const is a
normalisation factor. Indeed, this expression is exploited
in this work.

Following the Yakovenko et al. model [2, 3], we can
assume that changes of income of the low-income society
class are independent of the previous income gained. This
assumption is justi�ed because the income of households
belonging to this class mainly takes the form of wages
and salaries. The stochastic process associated with the
mechanism of this kind is called the additive stochastic
process. In this case, coe�cients A(m) and B(m) take,
obviously, the form of positive constants

A(m) = A0, B(m) = B0. (3)

This choice of coe�cients leads to the Boltzmann�Gibbs
law with exponential complementary cumulative distri-
bution function [2, 3, 10�13]:

Π (m) =

∫ ∞
m

Peq(m
′)dm′ = exp

(
−m−minit

T

)
. (4)

In Eq. (4), distribution function is characterised by a sin-
gle parameter, i.e. an income temperature T = B0/A0,
which can be interpreted in this case as an average in-
come per household.

For the medium- and high-income society classes, we
can assume (again following Yakovenko et al. [2, 3]) that
changes of income are proportional to the income gained
so far. This assumption is also justi�ed because prof-
its go to the medium- and high-income society classes
mainly through investments and capital gains. This type
of stochastic process is called the multiplicative stochas-
tic process. Hence, coe�cients A(m) and B(m) obey the
proportionality principle of Gibrat [20, 21]:

A(m) = am, B(m) = bm2 ⇔ C(m) =
√
2bm, (5)

where a and b are positive parameters. By using the equi-
librium distribution function, Eq. (2), we arrive in this
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case to the weak Pareto law with complementary cumu-
lative distribution function [2, 3, 6]:

Π (m) =

∫ ∞
m

Peq(m
′)dm′ =

(
m

ms

)−α
. (6)

Here, ms is a scaling factor (depending on a, b, and const)
while α = 1 + a/b is the Pareto exponent. The ratio of
the a to b parameters can directly be determined from
the empirical data expressed in the log�log plot (by us-
ing their slopes).

As Yakovenko et al. have already found [2, 3], the coex-
istence of additive and multiplicative stochastic processes
is allowed. By assuming that these processes are uncor-
related, we get

A(m) = A0 + am,

B(m) = B0 + bm2 = b(m2
0 +m2), (7)

where m2
0 = B0/b. This consideration leads (together

with Eq. (2)) to a signi�cant Yakovenko et al. model with
the probability distribution function given by

Peq(m) = const
e−(m0/T ) arctan(m/m0)

[1 + (m/m0)2]
(α+1)/2

, (8)

where parameters α and T are de�ned above.

Based on the Yakovenko et al. Eq. (8), the comple-
mentary cumulative distribution function can describe
income of only low- and medium-income society classes.
However, it does not capture that of the most intriguing
high-income society class.

The goal of our present work is to derive from Eq. (2)
such a distribution function, which would cover all three
ranges of the empirical data records, i.e. low-, medium,
and high-income classes of the society (including also two
short intermediate regions between them). To do that,
we have to provide function A(m) in the threshold form

A(m) =

{
A<(m) = A0 + am if m < m1,

A≥(m) = A′0 + a′m if m ≥ m1,

B(m) = B0 + bm2 = b(m2
0 +m2). (9)

At the threshold m1, there is a jump of the propor-
tionality coe�cient of the drift term. That is, this term
abruptly changes from a to a′ while the formalism of
the income change remains the same for the whole soci-
ety. This formalism is expressed by the threshold nonlin-
ear Langevin equation where particular dynamics distin-
guishes the range of the high-income society class from
those of the others.

The threshold parameter m1 can be interpreted as a
crossover income between the medium- and high-income
society classes. Remarkably, both income crossovers m0

and m1 (≥ m0) are exogenous parameters. They should
be determined from the dependence of the empirical com-
plementary cumulative distribution function on variable
m because both crossovers are su�ciently distinct.

Subsequently, by substituting Eq. (9) into Eq. (2), we
�nally get

Peq(m) =

 c′ exp(−(m0/T ) arctan(m/m0))

[1+(m/m0)2]
(α+1)/2 , if m < m1,

c′′ exp(−(m0/T1) arctan(m/m0))

[1+(m/m0)2]
(α1+1)/2 , if m ≥ m1,

(10)

where α1 = 1 + a′/b and T1 = B0/A
′
0. Apparently, the

number of free (e�ective) parameters driving the two-
-branch distribution function, Eq. (10), is reduced be-
cause this function depends only on the ratio of the initial
parameters de�ning the nonlinear Langevin dynamics.
For m1 � m0, the interpretation of the distribution

function, Eq. (10), is self-consistent, as required, because
the two power-law regimes are well de�ned. Then, for
instance for m � m0, the second branch in Eq. (10)
becomes the power-law dependence driven by the Pareto
exponent α1 di�erent (in general) from α.
Importantly, our analysis indicates that the existence

of the third income region is already allowed by theory.
We are following this indication below.

3. Results and discussion

In principle, we are ready to compare the theoretical
complementary cumulative distribution function based
on our probability distribution function Peq(m), given by
Eq. (10), with the empirical data for the whole income
range. However, the analytical form of this theoretical
complementary cumulative distribution function is un-
known in the closed explicit form. Therefore, we calcu-
late it numerically. The key technical question arises on
how to �t this complicated theoretical function to the em-
pirical data. The �tting procedure consists of three steps
as, fortunately, all parameters are to be found (in prin-
ciple) by using independent �tting routines, as follows.
In an initial step, we found approximated values of

crossovers m0 and m1 directly from the plot of the em-
pirical complementary cumulative distribution function
(or empirical data). Thus, uncertainty of the m0 and m1

parameters did not exceed 10%, which was su�ciently ac-
curate. Moreover, we took the exact value of the param-
eter minit as the �rst point in the record of the empirical
data.
Secondly, we determined the temperature T value by

�tting the Boltzmann�Gibbs formula, Eq. (4), to the cor-
responding empirical data in the range extending from
minit to m0 (both found in the initial step). Notably, we
assumed that this formula could be characterised by a
single temperature value since the society as a whole was
considered to be in (partial) equilibrium during the whole
�scal year. That is, we further put T1 = T ⇔ A′0 = A0.
At the third step, we determined exponents α and α1

by separately �tting the weak Pareto law to the empirical
data for the medium- and high-income society classes,
respectively.
Hence, we have already obtained all values required by

the extended Yakovenko et al. formula, Eq. (10). The cor-
responding plots of the empirical and theoretical comple-
mentary cumulative distribution functions in the log�log
scale are compared in Fig. 1, for instance, for year 2007.
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Fig. 1. Fit of the complementary cumulative distribu-
tion function, based on the extended Yakovenko et al.
formula, Eq. (10) (solid line), to the EU household in-
come empirical data set (dots) for year 2007 (T1 =
T2 = T = 37 × 103 ± 1 × 103 EUR, m0 = 1.60 ×
105 ± 0.16× 105 EUR, m1 = 3× 105 ± 0.3× 105 EUR,
α = 2.8643± 0.0008, and α1 = 0.70± 0.02) [15, 16].

Apparently, the predictions of the extended Yakovenko
et al. formula, Eq. (10) (solid curve in Fig. 1), well agree
with the empirical data (dots in Fig. 1) for low- and
medium-income society classes while agreement for the
high-income society class is satisfactory.

4. Concluding remarks

Herein, we proved that the household incomes of all
society classes in the EU can be modelled by the non-
linear threshold Langevin dynamics with m-dependent
drift and dispersion as ab initio level. At the thresh-
old m1, there is a jump of the proportionality coe�cient
of the drift term. That is, this term abruptly changes
from a to a′, where a′ < a (as α1 < α). It means that
the stochastic term in the Langevin equation is relatively
more signi�cant in this case (i.e. above threshold m1)
than the drift term.
Furthermore, for the medium-income society class the

Pareto exponent α > 2. This means that the variance
of the Pareto distribution function exists and it is �nite.
However, for the high-income society class the variance
of the Pareto distribution function is in�nite, because
α1 < 1. That is, assuming the variance as a measure of
a risk, the economic activity of the high-income society
class can be considered as more risky than activities of
all other society classes, as expected [1].
The completed database, which we used (by properly

joining the Forbes empirical database with that of EU-
-SILC), emphasises a signi�cant role of the high-income
society class. That is, only study of the income of all
society classes enables adequate characterisation of the
relative society wealth.
The obtained results advance the knowledge on the

subject matter [7, 8]. We hope that these results will be
useful for studies of static and dynamic properties of the

household incomes not only for the EU as a whole but
also for those of other continents and countries, if only
su�ciently honest, large, and complete (i.e. covering all
society classes) empirical data are available.
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