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In an emergency situation, imitation of strategies of neighbours can lead to an order-disorder phase transition,
where spatial clusters of pedestrians adopt the same strategy. We assume that there are two strategies, cooperating
and competitive, which correspond to a smaller or larger desired velocity. The results of our simulations within
the Social Force Model indicate that the ordered phase can be detected as an increase of spatial order of positions
of the pedestrians in the crowd.
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1. Introduction

Simulations of crowd dynamics is among the most ac-
tively developed applications of physical methods in so-
cial sciences. Standard di�culties met in such applica-
tions are in this case either absent, or seriously weak-
ened. First, crowd dynamics is relevant for control of
large gatherings and prevention of stampede catastro-
phes [1, 2]. Second, experimental data are accessible
[3, 4]. Third, a model (Social Force Model, SFM) has
been developed [5] which can be used by physicists with-
out any input of social sciences. Fourth, realistic values
of the model parameters have been obtained and veri-
�ed [6]. These causes made SFM a popular tool, used
and developed by various scienti�c groups of physicists
and computer scientists. To develop its connections with
collective sociological e�ects is one of our motivations
here.

In the original version of SFM [5, 6], most of the param-
eters are related to physical aspects of the interactions be-
tween pedestrians and of the interactions of pedestrians
with obstacles. There are two exceptions: the strength of
interpersonal, psychologically motivated repulsion A and
the desired velocity vd. A variation of A has been used
in [7, 8] to include individual decisions on calling for help
and coming to aid. Here we are interested in a variation
of the desired velocity vd. In SFM, equations of mo-
tion for each pedestrian are solved numerically, and one
of the forces is proportional to the di�erence vd − v(t),
where v(t) is the actual velocity of the given pedestrian.
In the conditions of evacuation, vd = 1.8 m/s seems to be
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appropriate as an accepted velocity of brisk walking [9].
On the contrary, vd = 3.0 m/s was found to produce
jamming at narrow exits [10]. Here we use these two val-
ues to di�erentiate between two strategies of evacuation:
cooperating (1.8 m/s) and competitive (3.0 m/s).

The collective character of the process is due to the
imitation e�ect. Namely, we use probabilities w(n) that
the strategy (cooperative or competitive, X = C or S)
of a given pedestrian will be changed if n out of 6 direct
neighbours of a given pedestrian adopt this strategy. The
number six is the number of nearest neighbours in a trian-
gular two-dimensional lattice, which is a model of people
in crowd; suggested by our former observations [10]. In
our former work, we used a square lattice [11]; yet we do
not expect qualitative di�erences between the results for
these two structures.

Our aim here is as follows. We expect that the imita-
tion leads to spatial correlations of strategies of pedestri-
ans, and that these correlations can lead to a respective
phase transition [11]. We ask if this phase transition is
visible in the crowd structure. This interest is motivated
by the idea of detecting collective e�ects online by anal-
ysis of crowd motion, registered by local cameras.

The strategy of our modelling is as follows. First we set
the probabilities w(n) as dependent on a single parameter
x and we solve numerically the Ising-like problem of se-
lecting strategies C or S by pedestrians. As the outcome
we get the set wc(n) where there is a transition between
the ordered and the disordered phase. Next we verify
the obtained transition point by means of the �uctuation
function [12]. These steps are described in Sect. 2. Next
we perform the simulations of crowd dynamics within
SFM, where pedestrians select vd = 1.8 m/s (strategy C)
or 3.0 m/s (strategy S). During the simulation, we eval-
uate how a local crowd structure depends on the param-
eter x and, in particular, we check if the above men-
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tioned phase transition is visible. This step is described
in Sect. 3. These considerations are illustrated by the
results of our �eld observations of crowd, described in
Sect. 4. Last section is devoted to discussion.

2. The phase transition

At this preliminary stage of modelling pedestrians are
placed at nodes of a two-dimensional, triangular lattice
and their motion is not taken into account. The lat-
tice contains N = 106 sites and helical boundary con-
ditions are assumed. In the initial state, strategies C
and S are assigned to pedestrians with given probabili-
ties r, 1 − r; spatial correlations are not taken into ac-
count. During the simulation, pedestrians change their
strategies with some probabilities w(n), that depend on
the number n of neighbouring subjects currently using
the same strategy (see also [8]). Here the functions
w(n) depend on a single control parameter x as follows:
w(0) = 1, w(1) = 3x, w(2) = 2x, w(3) = x, w(4) = x/2,
w(5) = x/4, w(6) = x/6. If w(n) > 1 for any n, we set
w(n) = 1. For simplicity, these probabilities are the same
for both strategies C and S. The choice of this shape of
the function w(n) is just to apply any decreasing func-
tion, which cannot be reduced to a thermodynamically
motivated exponential function of the ratio of energy to
temperature. Still, it seems to us that the existence of the
transition is generic and can be modelled by any function
with a tunable slope.
The numerical results indicate that indeed an order-

-disorder phase transition appears near xc = 0.429, as
shown in Fig. 1. For x < xc, the probabilities of state
changes are small and clusters of pedestrians with the
same strategy persist. This result is con�rmed by the
analysis of temporal dependence of the order parame-
ter, de�ned as m = [N(C) − N(S)]/N ; there, N(X)
is the number of agents who adopt strategy X, and
N = N(C) + N(S) = 106. The temporal dependence
of m for several control parameters x = 0.45, 0.5 and 0.6
(x > xc) is presented in Fig. 2. The simulation takes
M = 108 steps and single step is completed when all
N = 106 nodes are investigated in typewriter order. The
last half of these steps (M/2 = 5×107) is used for average
order parameter 〈m〉 evaluation (Fig. 1).
The continuous character of the phase transition is con-

�rmed by studying the persistence of order parameter
time series m(t) using multifractal detrended �uctuation
analysis with linear detrending (MF-DFA1) [12]. In this
approach, the q-th order �uctuation function is de�ned as

Fq(s) =

{
1

2Ns

2Ns∑
ν=1

[
F 2(ν, s)

]q/2}1/q

,

where F 2(ν, s) is the detrended variance calculated for
each segment ν of the length s, which is obtained by the
division of the analysed time series into non-overlapping
segments of equal length; q can be any real value, here
we use q ∈ {−2, 0.5, 2}.

Fig. 1. Average order parameter 〈m〉 dependence on
control parameter x. The last M/2 = 5 × 107 steps of
m(t) temporal evolution is used for average 〈m〉 evalu-
ation.

Fig. 2. The temporal dependence of order parameter
m(t) for several values of the control parameter x =
0.45, 0.5 and 0.6 (x > xc). The range of �uctuations
increase when we approach the transition point xc from
above.

Figure 3a shows typical MF-DFA �uctuation functions
for x ≈ 0.42. One can see a crossover from random walk
type scaling behaviour (Fq(s) ∼ sh(q) with h(q) ≈ 1.5)
on small time scales s to random white noise type scaling
behaviour (h(q) ≈ 0.5) on large time scales. The tempo-
ral range T of the correlations is given by the position of
the crossover, being close to 104 in this case. Figure 3b
shows the dependence of T on x, which follows a power
law, T (x) ∼ (x− xc)z with z ≈ −2. We see that T con-
tinously diverges in the vicinity of the transition point.

3. The crowd simulations

The simulation is performed in accordance to the orig-
inal formulation of the Social Force Model and the model
parameters [3, 5]. Pedestrians are moving, all in the
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Fig. 3. (a) MF-DFA �uctuation functions Fq(s) versus
the scale s for q ∈ {−2, 0.5, 2}; as it is seen, the curves
for di�erent q's almost overlap. (b) The temporal range
T of correlations as dependent on x.

Fig. 4. The mean di�erence of distances 〈D〉 as depen-
dent on x, taken from the SFM simulations.

same direction, along a corridor of �ve meters width,
with periodic boundary conditions. After each one sec-
ond, they check the strategies adapted at the moment
by their six nearest neighbours, and they modify their
strategies according to the probabilities w(n), the same
as given in Sect. 2.
To inspect the crowd structure, for each pedestrian

i we identify his six nearest neighbours and we calcu-
late the di�erence Di between the distances from i to his
nearest neighbour and from i to his sixth nearest neigh-
bour. In the triangular lattice, the di�erence is zero. The
smaller Di, the crowd is more ordered.

Fig. 5. The mean value 〈r〉 of the percentage of the
pedestrians who adopt the competitive strategy, taken
from the SFM simulations. Below xc, the results depend
on the initial value of r, which was taken as 0.7 (upper
curve) and 0.3 (lower curve).

Fig. 6. The experimental histogram of time gaps τ be-
tween pedestrians, as taken from the movie.

In Fig. 4 we show the dependence of the mean di�er-
ence of distances 〈D〉 on the parameter x, measured at
the tentatively stationary state. The mean is calculated
over all pedestrians i = 1, . . . , N and over a time period
of about ten seconds, after a transient time of the same
length. As we see, 〈D〉 is larger but more stable above
the transition point, i.e. for x > xc. Below this value of x,
a clear reduction of 〈D〉 can be observed, although large
�uctuations hamper the accuracy. In particular, we treat
the variation of 〈D〉 near c = 0.1 as a �uctuation. On the
other hand, the information on the initial state, encoded
by the probability r, is preserved below the transition;
this is shown in Fig. 5.

4. Field observation

The Corpus Christi procession in Kraków, Grodzka
Street, was registered by a hand camera on June 7, 2012
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from a window at 1st �oor, about �ve meters above the
street. The movie lasts ten minutes, but after about �rst
�ve minutes and 30 s the crowd density started to de-
crease. Also, during two �rst minutes priests and mili-
tary orchestra are moving in a prescribed order. Then
the material is limited to about 3′30′′, when the crowd
density is about one person per m2.
The aim was to check if some structure of the crowd

can be found. For this purpose, a lane along the street
is selected of about three meters width. For pedestri-
ans who appear at this lane, the times when their heads
disappear from the screen are registered manually. The
di�erences between these times are used to make a his-
togram of time gaps τ , shown in Fig. 6. We note that
the velocity of the crowd is more or less constant.
We expected and hoped to see two peaks in the his-

togram of the time gaps τ , and indeed the obtained plot
does not shatter these expectations. First peak, at about
0.2 s, is seen in the plots for all movies we did, and it can
be safely interpreted as related to pedestrians who walk
together. The second peak about 0.5 s is speci�c for this
crowd density. Once the density decreases, the times be-
tween subsequent groups vary much more and the second
peak is not visible.
We underline that the role of the experimental chap-

ter in our text is not as to con�rm the idea of the phase
transition, but rather to state that the structure of the
spatial positions of pedestrians is detectable. The two
peaks shown in Fig. 6 are analogous to a structure of
a density distribution function of atoms in disordered
solids. In our case, the structure of crowd in the pro-
cession is indeed ordered, as in one homogeneous phase
of cooperative behaviour.

5. Discussion

The results of numerical simulations within SFM indi-
cate that if the imitation process leads to a phase transi-
tion, and if the two states are related with di�erent values
of the desired velocity, then the ordered phase manifests
itself by an increase of short-range order. On the con-
trary, in the disordered phase the spatial correlations de-
crease, which means that clusters of people moving with
the same velocity disappear.
It would be desirable to con�rm this conclusion by our

�eld observation. However, the data recorded are re-
lated only to an ordered phase, where pedestrians move

with approximately the same velocity, and the statistics
is rather poor. Then, the obtained spectrum of times be-
tween neighbouring pedestrians can serve here as merely
an illustration that some amount of spatial short range
order does exist.
Our results suggest that it is possible to infer about

the state of crowd from its spatial structure registered
in one instant of time. More local ordering indicates the
presence of collective e�ects, which can be an e�ect of
imitation. This tool of crowd control can be complemen-
tary to correlations of velocity of pedestrians, detected
from movies [1].
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