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The document proposes a new entropy-based approach for estimating the parameters of nonlinear and complex
models, i.e. those whose no transformation renders linear in parameters. Presently, for estimating such class of
functions, various iterative technics like the Gauss—Newton algorithm are applied and completed by the least square
methods approaches. Due to conceptual nature of such methods, definitely estimated functions are different from
the original nonlinear one and the estimated values of parameters are in most of cases far from the true values. The
proposed approach, being related to the statistical theory of information, is very different from those so far applied
for that class of functions. To apply the approach, we select a stochastic non-homogeneous constant elasticity of
substitution aggregated production function of the 27 EU countries which we estimate maximizing a non-extensive
entropy model under consistency restrictions related to the constant elasticity of substitution model plus regular
normality conditions. The procedure might be seen as an attempt to generalize the recent works (e.g. Golan et al.
1996) on entropy econometrics in the case of ergodic systems, related to the Gibbs—Shannon maximum entropy
principle. Since this nonlinear constant elasticity of substitution estimated model contains four parameters in
one equation and statistical observations are limited to twelve years, we have to deal with an inverse problem
and the statistical distribution law of the data generating system is unknown. Because of the above reasons, our
approach moves away from the normal Gaussian hypothesis to the more general Levy instable time (or space)
processes characterized by long memory, complex correlation and by a convergence, in relative long range, to the
attraction basin of the central theorem limit. In such a case, fractal properties may eventually exist and the g non
extensive parameter could give us useful information. Thus, as already suggested, we will propose to solve for a
stochastic inverse problem through the generalized minimum entropy divergence under the constant elasticity of
substitution model and other normalization factor restrictions. At the end, an inferential confidence interval for
parameters is proposed. The output parameters from entropy formalism represent the long-run state of the system
in equilibrium, and so, their interpretation is slightly different from the “ceteris paribus” interpretation related to
the classical econometrical modeling. The approach seems to produce very efficient parameters in comparison to

those obtained from the classical iterative nonlinear method which will be presented, too.
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1. Tsallis entropy and low frequency series
econometric model

This document considers that the Tsallis entropy
should remain, even in the case of low frequency series,
a precious device for econometrical modeling since out-
puts provided by the Gibbs—Shannon entropy approach
correspond to the Tsallis entropy limiting case of the
Tsallis g-parameter equal to unity. Another maybe more
pertinent argument in favor of applying the Tsallis non-
-extensive entropy approach could result from the fact
that a number of complex phenomena involves the long
range correlations which, in particular, can be seen when
data are timely scaled-aggregated [1, 2]. This could prob-
ably be owing to interaction nature between the func-
tional relationships describing the involved phenomena
and the inheritance properties of a power law (PL), or
can be depending on their non-linearity. Delimiting the
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threshold values for a PL transition towards the Gaus-
sian structure (or to the exponential family law) as a
function of data frequency level, is difficult since each
phenomenon may display its own rate of convergence —
if any, towards the central theorem limit attractor.

The next source of statistical concern may come from
the systematic errors owing to the statistical data col-
lecting and processing. Such a situation eventually could
lead to tail queues distribution, too. Thus, a systematic
applying of the Shannon—Gibbs entropy approach in the
above cases — even on a basis of annual data — could be
misleading and lead to instable solutions, in the above yet
bad known situations. In reverse, since the non-extensive
Tsallis entropy generalizes the exponential family law [3],
the ¢-Tsallis entropy methodology fits well to the high
or low frequency series. Furthermore, among the class
of a few types of higher-order entropy estimators able
to generalize the Gaussian law, the Tsallis non-extensive
entropy presents the additional valuable quality of con-
cavity — then stability, along the existence interval char-
acterizing most of the real world phenomena. As far as
the g-generalization of the Kullback—Leibler (K-L) rela-

(502)


http://dx.doi.org/10.12693/APhysPolA.123.502
mailto:sbwanakare@wsiz.rzeszow.pl

A Stochastic Non-Homogeneous Constant Elasticity . .. 503

tive entropy index is concerned, the latter conserves the
same basic properties as the standard K-L entropy and
can be used for the same purpose [4].

Finally, as a consequence of the above reasoning, the
g-Tsallis parameter presents an expected advantage of
monitoring complexity of systems by measuring at what
extent a given random phenomenon is far from the Gaus-
sian benchmark. This can help, among other advantages,
in drawing some attention on the quality of collected data
or on the involved distribution.

2. Non-homogeneous constant elasticity
of substitution production function

In 1961 Arrow, Chenery, Minhas and Solow (ACMS)
[5, 6] have proposed a new mathematical function which
simultaneously displays the property of homogeneity,
constant elasticity of substitution (CES) between factors
of production and of the possibility of differentiating elas-
ticity of substitution for different industries, sectors or
countries. In this article we treat the generic case of an
aggregating function of production using the two classical
factors: labor and capital. Let us recall its mathematical
form

VA =a[6K; "+ (1—08)L;"] " e (1a)
or one of its generalized forms as

v

n )
Y = Zagl‘f’)Xf] (1b)
i=1
where
1—7°¢ .
p= with —1<p <+
and 0 <7°< +o0. (2)

7¢ constant elasticity of substitution, &; stands for the
random disturbance with unknown distribution. In
Eq. (1a), a stands for the shift parameter; the parameter
0 belongs to zero-one interval and represents the share
(distribution) of the sold quantities of both distributed
factors. The parameter v reflects a degree of changing
returns (V A) to scale. The higher the value of p, the
higher the degree of substitution between factors. When
this parameter converges to co we are dealing with the
case of perfectly complementary factors. The case of p
converging to 0 suggests perfectly substitutable factors.
The generalized form (1b) suggests a case of more than
two inputs X;.

Let us underscore an important connection between
the CES function and a PL. In fact, by aggregating into
one variable all X; of Eq. (1), we get a generic case
of a PL. Due to ubiquity of both functions, this sounds
to bear potential implications on the economical ground.
Parameter estimation of a CES model requires non-linear
fitting techniques which are quite complicated and out-
puts less reliable. Since this nonlinear function has 4 un-
known parameters — however with 3 degrees of freedom,
we deal with an inverse problem. For reaching better so-
lutions, we propose here to move away from the classical

Gibbs—Kullback-Leibler cross-entropy formalism to the
more general Tsallis non-extensive relative entropy.

3. g-Generalization of the K—L relative entropy
and constraining problems

The Kullback-Leibler index of information divergence'
[7] can be straightforwardly ¢-generalized as follows [4, §]:

1,(p,p®) = _/ dzp(z) Ing (p;;i?)
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in discrete case. I,(p,p®) stands for the traditional
Kullback—Leibler index of information divergence be-
tween hypotheses p and p(®, provided that ¢ is equal to
unity. There exist two main versions of the Kullback—
Leibler divergence (K-Ld) in the Tsallis statistics,
namely the usual generalized K—Ld shown above and the
generalized Bregman K-Ld [9]. Following Venkatesan
and Plastino in [10], problems have been encountered in
empirical implementation while trying to reconcile them.
In their recent study, above authors have revealed in-
teresting aspects concerning empirical research when the
g-generalized cross-entropy is associated with constrain-
ing information. Following a recent literature [10, 11], the
generalized Kullback—Leibler defined by Eq. (11) could be
more consistent with expectations and constraints form
proposed by Tsallis-Mendes—Plastino [9] known as the
g-averages or the escort distribution?:

() = 3 5 (5)

4. A generalized non-extensive entropy
econometric model

This paragraph applies the results of Golan et al. [12]
and some other authors, e.g. [6], who have proposed
to reparameterize the moment constraints of the model,
while argument in criterion function is already explained
in probability form. We need to transform variables of
constraining the generalized linear model into weight-
-probabilities over a support point space defining each of
the original random parameter. For the clarity of nota-
tions, let us present details of the below reparameterized

tSee for e.g. Kullback (1968) for rich definition of this index
and its connection with Bayesian formalism.

tHowever, for computational reasons, we have definitely opted
in this document for applying the Curado—Tsallis (C-T) constraints
[11] of the form: (yq) = >, ply;.
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CES model. Let us then consider the next general linear
model Y of the form

Y =XB+e, (6)
where (8 values are not necessarily constrained between
0 and 1. The variable ¢ is an unobservable disturbance
term with a finite variance. As in classical econometrics,
variable Y represents the system whose image must be
recovered, and X stands for a vector of covariates related
to the system by unknown parameters 8 with unobserv-
able disturbance ¢ to be estimated through observable
error components e. If we treat each g (k = 1...K)
as a discrete random variable with compact support [2]
and 2 < M < oo possible outcomes, then we can express

By as
M

ﬂk’ = Z pkmvkak € K7 (7&)
m=1

where pg,, is the probability of outcome vy, and the
probabilities must be non-negative and sum up to one.
Similarly, by treating each element e; of e as a finite
and discrete random variable with compact support and
2 < M < oo possible outcomes centred around zero, we
can express e; as

€, = Z rnjznj, (7b)
j=1...J

where r,, is the probability of outcome z,, on the support
space j. We will use the commonly adopted index n,
here and in the remaining mathematical formulations, to
design the number of statistical observations. It is worth
noticing that the term e can be fixed as percentage of
explained variable as an a priori Bayesian hypothesis.

Posterior probabilities within the support space may
display non-Gaussian distribution. Thus, we do not re-
strict the model to the conjugated distributions. The ele-
ment vk, constitutes an a priori information provided by
a researcher, while py,, is an unknown posterior (prob-
ability) whose value must be determined by solving a
divergence entropy problem.

In matrix notation, let us rewrite § = VP, with
Prm > 0 and Zle Y ms2. v Pkm = 1, where again K
is the number of parameters to be estimated and M the
number of data points on the support space. Also, let
e = rw, with r,; > 0 and 25:1 Z;']>2~~J rn; = 1 for N
the number of observations and J the number of data
points on the support space for the error term. Then,
using the escort distribution in model moment definition,
the Tsallis cross entropy econometric (MTEE) model can
be stated as

min Hy(al|a’, p||p°, r||r°)
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For the formal presentation reason, the criterion func-
tion (Eq. (8)) does not include probabilities wy, explain-
ing the degree of economy changing to scale and b; the
parameter of distribution between factors. In order to
improve the quality estimated parameter, the additional
a priori information can be added to (8)—(12). In the
case of a CES model, economic theory exists to helping
to predict the sign value variation domain for each pa-
rameter. Then we get

0<a=Ga< oo, (13)
0<d§=Tb<1, (15)

where «, p, 0 in Eq. (1a) stand for the original, “before-
-reparameterization” parameters. G, Z, T stand for the
above original parameter support space with correspond-
ing weight-probabilities a, p, b defining output posteri-
ors. The G, Z, T support spaces are included in a general
support space V' (Eq. (7a)) supporting all the parameters
of the constraining equation system. The weights «,
introduced in the above dual objective function may ex-
ercise a significant impact on the model outputs through
the Lagrange multipliers which transmits constraining in-
formation to the objective function.

5. Parameter confidence area

In this paragraph we will propose an inference infor-
mation index s(a;) as an equivalent to a standard pa-
rameter error measure in the case of classical econo-
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metrics. Equivalent of determination coefficient R?
will be proposed too under the entropy symbol S(Pr).
The departure point is that the maximum level of
entropy-uncertainty is reached when the non-relevant
information-moment constraints are enforced. This leads
to a uniform distribution of probabilities over the k states
of the system. As we add each piece of informative data
in the form of a constraint, a departure from the uni-
form distribution will result, which means an uncertainty
shrinkage. Thus, the value of below proposed S(Pr)
should reflect, for the whole model, a global departure
from the maximum uncertainty.

Let us follow formulations in [12] and propose a
normalized non-extensive entropy measure of s(a;)
and S(Pr). From the Tsallis entropy definition, S, > 0,
let us consider now all possible micro-states of the model.
This number vary with the number of the support space
data points ¢ (¢ = 1...M) and the number of parame-
ters of the model j (j = 1...J). Entropy S, vanishes (for
all ¢) in the case of M = 1; and for M > 1, ¢ > 0, when-
ever one of the p; (i = 1... M) occurrence equals unity,
the remaining probabilities, of course, vanish. A global,
absolute maximum of S, (for all ¢) is obtained, in the
case of a uniform distribution, i.e. when all p;, = 1/M.
In such an instance we have for two both systems the
maximum entropy equal to

Sqla;)=(M"1-1)(1—¢q)~" (16)
and
Sg(r)y=(n""=1)(1—¢q)~". (17)

In Eq. (17) n varies with the number of the support space
data points and the number of observations of the model.
We propose below a normalized entropy index in which
the numerator stands for the calculated entropy of the
system and the denominator displays the highest maxi-
mum entropy as shown above (Egs. (16) and (17)):

(pij/P?j)q_l -1

slag) = py = o [ (P 1) (=)
B (pij/p(i)j)q_l_l
=P aime (18)

with j varying from 1 to J (the number of parameters
of the system) and i belonging to M (the number of

J
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support space points), with M > 2. The total num-
ber micro-states is obtained by multiplying the number
of model parameters J by the number of support space
points M with M > 2. Then s(a;) reports precision
on the estimated parameters. Equation (19) reflects the
non-additivity Tsallis entropy property for two indepen-
dent systems. The first term S(p) is related to the pa-
rameter probability distribution and the second S(r) to
the error disturbance probability

S(Pr) =[S (p+ )]

={[S®) +S@H+(1-a)S®»)S ()}, (19)
where
(pij /YTt =1 g
f@:zzmthﬂM 1),
(rng/rons)d 1 —1 4
Sir)y == rapnd qjl /(1= F70),

S(Pr) is then the sum of the normalized entropies re-
lated to the parameters of the model S(p), and to the
disturbance term S(7). Likewise, the latter value S(7)
is derived for all observations n, with F' the number of
the data points on the support space of the estimated
probabilities r related to the error term. The values of
these normalized entropy indexes S(;;), S(Pr) vary be-
tween zero and one. Its values, near unity, indicate a
poor informative variable — with higher entropy, while
lower values are, in reverse, an indication of a better in-
formative variable about the model. Both indexes fulfil
the basic Fisher-Rao—Cramer information index proper-
ties, among which are continuity, symmetry, maximum
and additivity.

6. Model outputs and discussion

This paragraph presents the model outputs in the case
of the EU (27 countries) aggregated value added (VAy)
by the labour (L;) and capital (K;) components. The
observed data cover twelve years period and are presented
in Table I. We use a code General algebraic modelling
system (GAMS) and the solver Minos5 to compute the
model.

Aggregated value added and its components (mld euro) for 27 EU countries. TABLE I
Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
VAma | 7.820 | 8.136 | 8427 | 8578 | 8978 | 9.294 | 9.760 | 10.288 | 10.288 | 9.777 | 10.149 | 10.412
K 3.287 | 3.420 | 3.550 | 3.641 | 3.860 | 4.020 | 4.265 4.528 4.476 4.105 4.336 4.444
Ly 4.427 | 4.606 | 4.760 | 4.819 | 4.990 | 5.149 | 5.374 5.630 5.683 5.554 5.691 5.834

Source: http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/

Figure 1 provides a comparison between the outputs
from the cross-entropy (VAentrop) and the nonlinear least

(

squares (VA,ns) regressions.

For the results obtained

in both cases, we note a standard error variation coef-
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ficients of CV of 0.06% and 11.5% for respectively the
cross-entropy and the NLLS approaches. An index CV
is obtained by dividing the standard error model distur-
bance by the average value of the dependent variable, i.e.
the value added VA;. The interval of interest is the one
between unity (the Shannon entropy point) and 7/3 (the
minimum square error point in this problem).

105

VA, VAentr, VAnlls

L L L L L
2000 2002 2004 2006 2008 2010

Fig. 1. Ex-post predictions of VA, by g-entropy and
NLLS approaches.

Figures 2 and 3 depict the relationships between the
model error component CV and the ¢-Tsallis values,
over a convex interval from 1 to 7/3 defining the CV
minima for different values of q. The g-parameter has
been incremented by a step of 0.5 starting from unity.
Thus, this interval covers the Gaussian (1 < ¢ < 5/3)
and the partially stable laws (e.g. Levy’s) attractors for
(5/3 < g < 3). The purpose of below displayed figures is
to depict the model disturbance structure dynamics for
different g-values.

Axis 1: q_Tsallis
Axis 2: CV

Fig. 2.

Bivariate kernel density estimates between CV
and q_ Tsallis, for [1.0 < ¢ < 7/3].

Figure 2 displays the bivariate kernel joint density of
f(cv,q) with bandwidth h = cn(~1/%) where ¢ = 1. Fig-
ure 2 is related to the interesting us interval of [1 <
g < 7/3]. This higher bound is proposed because in this
problem when ¢ converges to 7/3 (see Fig. 3, point 25
on z-axis), CV reaches the global minimum over a con-
vex space minimizing the considered criterion function.
This corresponds to the best estimates of the model. We

Fig. 3. Model disturbance (CV) curve as a function
of g, for [1 < ¢ < 2.6].

would have expected solution for a ¢ less than 5/3 for
theoretical and empirical evidence.

However, comparable outputs may exist in literature.
For example, Borges [13] found cumulative distribution
of the scaled gross domestic product of the 167 coun-
tries around the world for the year 2000 corresponding
to ¢ = 3.5. This subject probably deserves further inves-
tigations. Coming back to Fig. 2, we observe 3 scaling
structures of error components along with g-parameter
steadily evolving towards the minimum point of the
model error level.

Due to a low frequency twelve year period model sam-
ple, such a structure is most probably owing to the non-
-stationary series combined with the non-linear mathe-
matical form of the CES function. As far as the model
estimation is concerned, the model parameters have been
initialized by the parameter output values from the non-
linear LS approach. The selected a priori parameter sup-
port space points for reparameterization vary between
—5.5 and +5.5. The same prior space has been retained
for the error disturbance but vary between —3 and +3,
so as to conform it to the three sigma rule related to
the Chebyshev inequality [14]. Both spaces are symmet-
ric around zero, which prevents from bias of the esti-
mated parameters. In the two component criterion func-
tion (Eq. (8)), we have retained a weight of 5% for the
random disturbance. However, we have noticed the min-
imum error point of 7/3 to be less sensitive to weights.

6.1. Parameter outputs of the Tsallis relative
entropy model

The parameters output of the Tsallis relative entropy
model are given in Table II.

6.2. Nonlinear LS estimation outputs

In the case of the traditional nonlinear least square
methods, Eq. (1) has first to be linearized using the
Mac Lauren development, and next we apply the LS ap-
proaches [15] (Table III).
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TABLE II
Dependent var: VA;-aggregated EU value added.
Exogenous var: labour, capital A § p v
estimates ; 1.866 | 0.163 | 0.001 1.0

Information index I(S(Pr)) =1 — S(Pr) =1 —0.005 = 1.0
variable g Tsallis parameter (for a weight o; = 0.95%) = 2.333
CV = 0.06%

The scaling parameter values A and the parameter v of
changing returns (V' A) to scale of both models are close
to each other. However, since the error component is
much higher in the case of the non-linear LS estimation,
the g-cross entropy based estimates appear to be more

J

reliable. Taking into account of the fact we deal with ag-
gregated accounts of the 27 EU countries, the estimated
parameters by the cross-entropy formalism remain con-
form to our expectations. The estimated parameter p
with a value around zero suggests a convergence of the
analyzed CES function to the well known by economists
Cobb—Douglas function displaying, in the present case,
constant returns to scale. A long-run optimal equilibrium
share parameter § between factors shows a lower propor-
tion of labour of around 16.3% with respect to capital
(83.7%). In 2010, this proportion was around 57% in
favour of labour.

Dependent var: VA;-aggregated EU value added. TABLE III
Exogenous var: labour, capital A 1) P v
estimates ; 1.995 | 0.282 | 3.046 | 0.993

standard error on model parameters (7-value)

48.89 6.61 1.49 6.61

coefficient of determination R? ~ 0.88
CV ~11.5%

7. Concluding remarks

The present work has tried to develop a new Tsallis
cross-entropy approach for econometric modelling, par-
ticularly in the case of inverse problem. The output val-
ues display a high precision and remain conform to our
long run economic expectations. A global optimum of
the model at very high value of g-parameter needs fur-
ther verifications. Since the CES function stands for a
particular form of a power law, the proposed approach
should be suitable for future theoretical and empirical
investigations on these classes of functions.
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