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In this paper, we consider an Ising model with three competing interactions (nearest neighbor, next-nearest
neighbor, and ternary prolonged neighbor) on the Cayley tree of order two, investigated by Ganikhodjaev et al.
We study translation-invariant Gibbs measures of the Ising model with these competing interactions. Also, we
investigate the set of the extreme Gibbs measures called Markov random �elds with memory 2 of the model.
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1. Introduction and de�nitions
One of the central objects of equilibrium statistical me-

chanics is the Gibbs measure [1], a branch of probability
theory that takes its origin from Boltzmann [2]. Also, one
of the main problems of the statistical physics is to de-
scribe all the Gibbs measures corresponding to the given
Hamiltonian. It is well known that such measures form a
nonempty convex compact subset in the set of all prob-
abilistic measures. The purpose of this paper is to in-
vestigate the Gibbs measures of the Ising model [3] with
ternary prolonged and nearest neighbor interactions on
the Cayley tree of order two and to describe its extreme
elements (pure phases). In [4], we have studied phase
diagram and extreme Gibbs measures of the Ising model
on a Cayley tree in the presence of competing binary
and ternary interactions. In [5], we have obtained the
extreme Gibbs measures of the Vannimenus model [6].
We studied the Gibbs states (phases) that correspond in
probability theory to what are called Markov chains with
memory length 2 by using the method in [7]. In this pa-
per, we combine the results obtained in [4] and [5]. Our
model with competing nearest-neighbors, next-nearest
neighbors, and prolonged next-nearest-neighbors ternary
interactions is de�ned by the following Hamiltonian:

H(σ) = −J1
∑
〈x,y〉

σ(x)σ(y)− Jp
∑
〉x̃,z〈

σ(x)σ(z)

− Jt
∑
〉x̃,y,z〈

σ(x)σ(y)σ(z) (1)

where the sum in the �rst term ranges nearest-neighbors
(NN), the sum in the second term ranges all next-nearest
neighbors (NNN) and the sum in the third term ranges
all prolonged ternary next-nearest-neighbors (PTNNN).
Here J1, Jp, Jt ∈ R are coupling constants (see [3] for
details). As usual, one can introduce the notions of the
Gibbs distribution of this model, limiting Gibbs distribu-
tion, pure phase (extreme Gibbs distribution), etc. (see
[7�9]). See [3] for a model (1) producing basic equations.
De�nition 2.1. Let 〈x0, x1〉 = l0 ∈ L be an edge of

the Cayley tree Γ k. The in�nite subtree Γ kl0 = (V l0 , Ll0)

is called a single-trunk Cayley tree, if from vertex x0

single edge l0 emanates and from any other vertex x ∈
V l0 , x 6= x0 exactly k + 1 edges emanate. If an arbitrary
edge 〈x0, x1〉 = l0 ∈ L is deleted from the Cayley tree Γ k,
it splits into four components four single-trunk Cayley
trees Γ kli , i = 1, 2, 3, 4, where i(l1) = 〈x0, x2〉, i(l2) =

〈x0, x3〉, i(l3) = 〈x1, x4〉, i(l4) = 〈x1, x5〉.

Theorem 2.1. In order for µ to be an extreme Gibbs
distribution on Γ k, it is necessary and su�cient that
there exist extreme Gibbs distributions µi, i = 1, 2, 3, 4
(which are determined uniquely by µ) on Γ kli , i = 1, 2, 3, 4,
respectively, such that

µ =

4∏
i=1

µiZ
−1
[
exp(βJ1σ(x

0)σ(x1))

+ exp(βJtσ(x
1)σ(x0)σ(x4))

+ exp(βJtσ(x
1)σ(x0)σ(x5))

+ exp(βJtσ(x
0)σ(x1)σ(x2))

+ exp(βJtσ(x
0)σ(x1)σ(x3))

+ exp(βJpσ(x
1)σ(x4)) + exp(βJpσ(x

1)σ(x5))

+ exp(βJpσ(x
0)σ(x2)) + exp(βJpσ(x

0)σ(x3))
]
,

where Z > 0 is the normalizing constant and β = 1/T
is the inverse temperature. Theorem 2.1 reduces the de-
scription of extreme Gibbs distributions on Γ k to the
single-trunk Cayley tree Γ kl0 . Let V l0 be the set of ver-

tices of the Γ kl0 and Ll0 its set of edges. On the tree

Γ kl0 one can single out the boundary vertex x0 ∈ V l0

from which single edge l0 = 〈x0, x1〉 ∈ Ll0 emanates. As
above we set W l0

n = {x ∈ V l0 |d(x, x0) = n}, V l0n = {x ∈
V l0 |d(x, x0) ≤ n}, and Ll0n be the set of edges in V l0n . It

is evident that |W l0
0 | = |W

l0
1 | = 1 and |W l0

n | = 2n−1 for
n ≥ 2. We write l1 ≺ l2 if i(l1) = 〈x, y〉, i(l2) = 〈z, t〉
and x ≺ y ≺ z ≺ t. We call the edge l2 a direct succes-
sor of l1 if i(l1) = 〈x, y〉, i(l2) = 〈y, z〉 and x ≺ y ≺ z.
For given edge lx = 〈x, y〉 ∈ Ll0 with x ≺ y the set
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of vertices V l0l = {x, y, z ∈ V l0 |z � y} with the edges

connecting them form the single-trunk Cayley tree Γ klx
�growing� from the edge lx = 〈x, y〉 ∈ Ll0 .
Theorem 2.2. Let n ≥ 2. In order for µ to be an

extreme Gibbs distribution on Γ kl0 , it is necessary and
su�cient that there exist extreme Gibbs distribution µlx
on Γ klx , x ∈ W l0

n (which are uniquely determined by µ)
such that

µ = Z−1n exp (−βHn(σ))
∏
x∈Wn

µlx ,

where

Hn(σ) = −Jt
∑
〉x̃,y,z〈
x,y,z∈Vn

σ(x)σ(y)σ(z)

−Jp
∑
〉x̃,z〈
x,z∈Vn

σ(x)σ(z)− J1
∑
〈x,y〉
x,y∈Vn

σ(x)σ(z).

Proof : This also follows from Theorem III.1 [7].
Denote as above by E = E(Γ kl0) the set of extreme

Gibbs distributions on Γ kl0 and by F = F (Γ kl0) the set

of the Gibbs distributions on Γ kl0 such that there exist

the Gibbs distributions µlx on Γ klx , x ∈ W l0
n such that

for each n ≥ 0 the factorization (2) is true. From Theo-
rem 3.2 it follows that E ⊂ F . The class F is the class of
the Markov random �elds on the Cayley tree (see [8�10]).
Theorem 2.3. Let µ ∈ F and {µlx , x ∈ V l0} be

the corresponding Gibbs distributions on Γ klx , x ∈ V l0 .

Then, for any x ∈ V l0 , µlx ∈ F (Γ klx) and {µly , ly, lx} are
the corresponding Gibbs distributions that guarantee the
factorization property (2).
Proof. The proof is the similar to the proof of the

Theorem 3.3 in [5].
Let µ ∈ F and {µlx , x ∈ V l0} be the correspond-

ing Gibbs distributions on Γ klx , x ∈ V l0 . Consider the
distribution µlx(σ(lx)) of the con�guratio σ(lx) with
respect to µlx writing it in the form µlx(σ(lx)) =
Z−1 exp(σ(x)σ(y)hxy,σ(x)σ(y)), where hxy,σ(x)σ(y) ∈ R
is the �e�ective� local external �eld at the edge lx in-
duced by µlx and Z is the normalizing factor. Let lx =
〈x, y〉, ly = 〈y, z〉, where x ≺ y ≺ z. It is evident that
µlx(σ(x), σ(y)) =

∑
σ(z)∈{+1,−1} µlx{σ(x), σ(y), σ(z)},

that is

L−1 exp
(
σ(x)σ(y)hxy,σ(x)σ(y)

)
=

∑
σ(z)∈{+1,−1}

exp
(
σ(y)σ(z)hyz,σ(y)σ(z)

+ βJpσ(x)σ(y)σ(y)σ(z)

+ βJtσ(x)σ(y)σ(z) + βJ1σ(y) (σ(x) + σ(z))
)
. (3)

Then for �xed σ(x) = ±1 and σ(y) = ±1, we obtain the
following recurrent equations:

(i) L−1 exp(hxy,++)

= exp (hyz,++ + βJp + βJt + 2βJ1)

+ exp (−hyz,+− − βJp − βJt) ,

(ii) L−1 exp(−hxy,+−)
= exp (−hyz,−+ + βJp − βJt − 2βJ1)

+ exp (hyz,−− + βJt − βJp) ,
(iii) L−1 exp(−hxy,−+) = exp (hyz,++ − βJt − βJp)

+ exp (−hyz,+− + βJt + βJp − 2βJ1) ,

(iv) L−1 exp(hxy,−−) = exp (−hyz,−+ + βJt − βJp)
+ exp (hyz,−− − βJt + βJp + 2βJ1) . (4)

In this paper, our main aim is to solve the system of
equations in (4). Therefore, there are three cases when
this system of equations is solvable:

1. h++ = h−+ = h1(y, z) and h−− = h+− = h2(y, z);

2. h++ = −h−− = h1(y, z) and h+− = −h−+ =
h2(y, z);

3. h++ = h+− = h1(y, z) and h−− = h−+ = h2(y, z).

For each of these cases we will de�ne the transforma-
tion:

F = (F1, F2):R
2 → R2 (5)

with h′1 = F1(h1, h2) and h′2 = F2(h1, h2). The �xed
points of Eq. (5) such that h = F (h), where h = (h1, h2),
describe translation-invariant phases of the model (1).

2. Markov random �elds with memory 2:

phase transitions

In this section we consider the Gibbs states (phases)
that correspond in probability theory to what is called
Markov chains with memory length 2 for the Ising model
obtained by Hamiltonian (1).
Case 1. Assume that h++ = h−+ = h1(y, z) = h1

and h−− = h+− = h2(y, z) = h2. Then for an edge
lx = 〈x, y〉 with direct successor l1y = 〈y, z〉 and l2y = 〈y, t〉
using equations given in Eq. (4). From Eq. (4), if we

divide (i)
(iii) and (ii)

(iv) then we produce following recurrent

equations:

h1(x, y) = log a+
1

2
log

(
(bc)2 eh1(y,z)+h2(y,z) + 1

aeh1(y,z)+h2(y,z) + (bc)2

× (bc)2 eh1(y,t)+h2(y,t) + 1

aeh1(y,t)+h2(y,t) + (bc)2

)
,

h2(x, y) = log a+
1

2
log

(
c2 + ab2 eh1(y,z)+h2(y,z)

b2 + ac2 eh1(y,z)+h2(y,z)

× c2 + ab2 eh1(y,t)+h2(y,t)

b2 + ac2 eh1(y,t)+h2(y,t)

)
,

where exp(2βJ1) = a, exp(βJp) = b, exp(βJt) = c and
β = 1/T .
Theorem 3.4. For any collection of the quantities

{hl, l ∈ L0} satisfying these recurrent equations there
exists the Gibbs distribution µ ∈ F (Γ kl0); moreover, the
distribution is unique.
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If we choose as h++ = h−+ = h1(y, z) = h1 and
h−− = h+− = h2(y, z) = h2, then we obtain the trans-
formation F = (F1, F2) : R

2 → R2 with h′1 = F1(h1, h2)
and h′2 = F2(h1, h2), where

h′1 = log

(
a((bc)2 eh1+h2 + 1)

aeh1+h2 + (bc)2

)
,

h′2 = log

(
a(c2 + ab2 eh1+h2)

b2 + ac2 eh1+h2

)
. (6)

The �xed points h = F (h) of Eq. (5), where h = (h1, h2),
describe translation-invariant phases of the model (1).
Let us investigate the �xed points of the dynamic sys-
tem (6):

h1 = log

(
a((bc)2 eh1+h2 + 1)

aeh1+h2 + (bc)2

)
,

h2 = log

(
a(c2 + ab2 eh1+h2)

b2 + ac2 eh1+h2

)
.

If we choose as exp(h1) = z1 and exp(h2) = z2, then we
get the following equations:

z1 =
a((bc)2z1z2 + 1)

az1z2 + (bc)2
, z2 =

a(ab2z1z2 + c2)

ac2z1z2 + b2
. (7)

Assume that u = z1z2. If we multiply the identities in (7)
then we obtain

g(u) :=
a2((bc)2u+ 1)(ab2u+ c2)

(au+ (bc)2)(ac2u+ b2)
= u. (8)

We obtain

a2c2 + (a3b2 − b4c2 + a2b2c4)u

+
(
−ab2 + a3b4c2 − ab2c4

)
u2 − a2c2u3 = 0. (9)

Let us note that if there is more than one positive so-
lution for the equations in (7), then there is more than
one translation-invariant Gibbs measure corresponding
to these solutions. We say that a phase transition occurs
for the model (1), if Eq. (9) has more than one positive
solution.

Case 2. Now, let us consider the second special case:
h++ = h+− = h1(y, z); h−− = h−+ = h2(y, z). Similar

to Case 1, from Eq. (4), if we divide (i)
(ii) and (iv)

(iii) and if

we choose as exp(h1) = z1, exp(h2) = z2, then we can
get the following equations:

z1 =
az2[a(bc)

2z21 + 1]

z1(b2 + ac2z22)
,

z2 =
az1(c

2 + ab2z22)

z2[(bc)2 + az21 ]
. (10)

From the �rst equation in (10), we have z21 =
az2

(b2+ac2z22−(abc)2z2)
and substituting it to squared second

one we get the following equation:

−a3b2c4v + a5b2c6v2 + (−2a4b4c2 − a5c6)v3

+ (2a6b4c4 + b8c4)v4

+ (−a5b6 + 2a2b4c2 − 2a6b2c4 − 2a2b8c6)v5

+ (a4 + a7b6c2 − 2a4b4c4 + 2a2b6c6 + a4b8c8)v6

+ (−a7b4c2 + 2a4b2c4 − 2a4b6c8)v7 + a4b4c8v8

= 0,

where for brevity assume z2 = v. In this case, if positive
solutions of the last equation are more than one, then
there exists phase transition. Also, the solutions of the
last equation describe the extreme Gibbs measures with
memory 2 corresponding to the model (1).
Case 3. Lastly, let us consider the third special

case h++ = −h−− = h1(y, z) = h1; h+− = −h−+ =
h2(y, z) = h2. Again similar to Case 1, from Eq. (4), if

we divide (i)
(iv) and (iii)

(ii) and if we choose as exp(h1) = z1
and exp(h2) = z2, we have

z1 =
z1[a(bc)

2z1z2 + 1]

z2(c2z1z2 + ab2)
, z2 =

z1[az1z2 + (bc)2]

z2(b2z1z2 + ac2)
.

(11)

From (11), we have z2 = a(bc)2z1z2+1
c2z1z2+ab2

and z22 =
z1[az1z2+(bc)2]
b2z1z2+ac2

. If we multiply the last equation by z2
and assume that z1z2 = x, then we obtain the following

equation: x =
(
a(bc)2x+1
c2x+ab2

)3 (
b2x+ac2

ax+(bc)2

)
= g(x).

We should obtain the �xed point of the function g. In
order to describe the solution of the system of nonlinear
equations in (11), we should analyze the function g(u).
Let us take the �rst derivative of g(x);

g′(x) =
c2(1 + ab2c2x)2(A+Bx+ Cx2)

(b2c2 + ax)2(ab2 + c2x)4
, (12)

where A = ab2[b4 − 3c4 + a2(−1 + 3b4c4)], B =
2[−b4 + a4b4 + 2a2(−1 + b8)]c2 and C = ab2[−3 + b4c4+
a2(3b4 − c4)].
Due to the positivity of c2(1+ab2c2x)2

(b2c2+ax)2(ab2+c2x)4 , we study

the sign of A + Bx + Cx2. In order to study the �xed
points of Eq. (5) such that h = F (h), we have obtained
h = (h1, h2) = (log(z1), log(z2)). Thus, for the third case
we will describe the set of the extreme Gibbs measures
with memory 2 corresponding to the model (1).

3. Conclusions

In previous works [4, 5], for given Hamiltonians we
obtained the Gibbs states that correspond in probabil-
ity theory to what are called Markov chains with mem-
ory length 2. In this paper, we have studied the ex-
treme Gibbs measures corresponding to Hamiltonian (1).
We have considered three types of transformation F =
(F1;F2):R

2 → R2. Since we will have some complicated
formulae for the coe�cients and the solutions, we do not
present the solution here. The proofs and results will be
considered in more detail later on in future publications.
Also, the study of periodic the Gibbs measures will be
considered in more detail later on in future publications.
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