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1. Introduction

The hexagonal �nite cellular automata (shortly
HFCA) are 2-dimensional (2D) cellular automata whose
cells are of the form of hexagonal. Morita et al. [1] in-
troduced this type of cellular automaton (CA) and they
called it hexagonal partitioned CA (HPCA). A remark-
able application of the family of these CAs is presented
by Trun�o [2] where a model is presented to simulate the
evolution of forest �res and Hernández Encinas et al. [3]
where they introduce a new mathematical model for pre-
dicting the spread of a �re front in homogeneous and
inhomogeneous environments. Also, in [4], debris �ows
are simulated and modeled by two-dimensional hexagonal
cellular automata. These families of cellular automata
are also applied to design discrete models of chemical
reaction-di�usion systems [5].
Also, 2D CAs have found applications in tra�c mod-

eling. For instance multi-value (including ternary) CA
models for tra�c �ow are proposed in [6]. Recently, cel-
lular automata have found applications in cryptography
[7, 8], especially 2D CA have been proposed for multi-
-secret sharing scheme for colored images [9].
Due to the applications and modeling on hexagonal

cellular automata, the algebraic structure of cellular au-
tomata has been of much interest to the researchers
[10�13]. Algebraic representation of 2D CA helps in
determining the characterization of CA. An important
characterization is the determination of the reversibility
of CA [13]. In [14], we have characterized a 2D �nite CA
by using matrix algebra built on Z3. Also, we have an-
alyzed some results about the rule numbers 2460N and
2460P. In [15], we have obtained necessary and su�cient
conditions for the existence of Garden of Eden con�gu-
rations for 2D ternary CAs.
In this paper, we deal with CA de�ned by hexago-

nal rules under periodic boundary condition (PBC) and
the ternary �eld Z3. We obtain the rule matrix of the
hexagonal �nite periodic cellular automaton (HFPCA).
We compute the rank of rule matrices related to HFPCA

via an algorithm. Hence, we determine the reversibility
of this type 2D CA which is one of the di�cult problems
in higher dimension as explained in the previous para-
graph. Further, by using the matrix algebra it is shown
that the HFPCA are reversible, if the number of columns
is even and the HFPCA are not reversible, if the number
of the columns is odd.
A periodic boundary CA is the one where the extreme

cells in the boundaries are adjacent to each other peri-
odically [16]. A null boundary CA is the one where the
extreme cells in the boundaries are connected to the zero
states. The surrounding cells are all in zero state. For
convenience of analysis, the state of each cell is an ele-
ment of a �nite or in�nite state set. Moreover, the state

of the cell (i, j) at time t is denoted by x
(t)
(i,j). The state

of the cell (i, j) at time t+1 is denoted by x
(t+1)
(i,j) = y

(t)
(i,j).

Let us consider the

C(t) =


x
(t)
11 . . . x

(t)
1n

...
. . .

...

x
(t)
m1 . . . x

(t)
mn

 .

The matrix C(t) is called the con�guration of the
2D �nite CA at time t. We associate pla-
nar hexagonal presentations with column vectors by
transforming them from C(t) to ([X]mn×1)

T =

(x
(t)
11 , x

(t)
12 , . . . , x

(t)
1n , . . . , x

(t)
m1, . . . , x

(t)
mn)T.

Hence, we can consider the transition matrix TR
such that (TR)mn×mn[X]mn×1 = [Y ]mn×1, where

([Y ]mn×1)
T = (y

(t)
11 , y

(t)
12 , . . . , y

(t)
1n , . . . , y

(t)
m1, . . . , y

(t)
mn)T. If

j is an even positive integer, then we have

y
(t)
(i,j) = ax

(t)
(i−1,j) + bx

(t)
(i,j+1) + cx

(t)
(i+1,j+1) + dx

(t)
(i+1,j)

+ ex
(t)
(i+1,j−1) + fx

(t)
(i,j−1) mod 3.

If j is an odd positive integer, then we have

y
(t)
(i,j) = ax

(t)
(i−1,j) + bx

(t)
(i−1,j+1) + cx

(t)
(i,j+1)

+ dx
(t)
(i+1,j) + ex

(t)
(i,j−1) + fx

(t)
(i−1,j−1) mod 3,

(480)
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where a, b, c, d, e, f ∈ Z∗
3 = Z3 \ {0} = {1, 2} and

x
(t)
(i,j) ∈ Z3.

2. The rule matrix

In this section, we obtain the rule matrix corresponding
to the 2D �nite HCAs de�ned by hexagonal local rules.
Theorem 1: Let a, b, c, d, e, f ∈ Z∗

3 , m ≥ 3 and n be
an even positive integer. Then, under periodic boundary
condition the rule matrix (T 0

R)mn×mn from Zmn
3 to Zmn

3

which takes the t-th �nite hexagonal con�guration C(t)

of order m× n to the (t+ 1)-th state C(t+1) is given by

(T 0
R)mn×mn =



A0 B0 O O . . . . . . O C0

C0 A0 B0 O . . . . . . O O

O C0 A0 B0 O . . . O O
...

...
...

...
...

...
...

...

O O . . . O C0 A0 B0 O

O O . . . . . . O C0 A0 B0

B0 O . . . . . . O O C0 A0


,

(1)

where each submatrix is of order n × n and O is zero
matrix of order n× n,

A0 =



0 c 0 0 . . . 0 e

f 0 b 0 . . . 0 0

0 e 0 c . . . 0 0

0 0 f 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 e 0 c

b 0 . . . 0 0 f 0


,

B0 =



d 0 0 0 . . . 0 0

e d c 0 . . . 0 0

0 0 d 0 . . . 0 0

0 0 e d . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 0 d 0

c 0 . . . 0 0 e d


,

C0 =



a b 0 0 . . . 0 f

0 a 0 0 . . . 0 0

0 f a b . . . 0 0

0 0 0 a . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 f a b

0 0 . . . 0 0 0 a


.

Theorem 2: Let a, b, c, d, e, f ∈ Z∗
3 , m ≥ 3 and n be

an odd positive integer. Then, under periodic boundary

condition the rule matrix (T 1
R)mn×mn from Zmn

3 to Zmn
3

which takes the t-th �nite hexagonal con�guration C(t)

of order m× n to the (t+ 1)-th state C(t+1) is given by

(T 1
R)mn×mn =



A1 B1 O O . . . . . . O C1

C1 A1 B1 O . . . . . . O O

O C1 A1 B1 O . . . O O
...

...
...

...
...

...
...

...

O O . . . O C1 A1 B1 O

O O . . . . . . O C1 A1 B1

B1 O . . . . . . O O C1 A1


,

(2)

where each submatrix is of order n × n and O is zero
matrix of order n× n,

A1 =



0 c 0 0 . . . 0 e

f 0 b 0 . . . 0 0

0 e 0 c . . . 0 0

0 0 f 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 f 0 b

c 0 . . . 0 0 e 0


,

B1 =



d 0 0 0 . . . 0 0

e d c 0 . . . 0 0

0 0 d 0 . . . 0 0

0 0 e d . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 e d c

0 0 . . . 0 0 0 d


,

C1 =



a b 0 0 . . . 0 f

0 a 0 0 . . . 0 0

0 f a b . . . 0 0

0 0 0 a . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 0 a 0

b 0 . . . 0 0 f a


.

The theorem can be proved similar to the theorem
in [13].

3. The reversibility cases of 2D HFPCAs

As mentioned in introduction, the problem of deter-
mining whether a 2D CA is reversible is a very di�cult
problem in general. Further, there is no algorithm in
general [17]. In this section, we make use of the struc-
ture obtained in the previous sections and determine the
reversibility problem for all orders m × n. In order to
present the problem and its solution we need to split the
problem in two parts depending on the integerm whether
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it is even or odd. We will conclude that if the rule ma-
trix associated to the HFPCAm×n is invertible, then the
HFPCAm×n is reversible, otherwise, the HFPCAm×n is
irreversible. To determine the invertibility of the rule
matrix associated to the HFPCAm×n, we �rst study the
submatrix A0 for even case.

3.1. The rank of T 0
R

Lemma 1: For all even n = 2k with odd k > 1,
det(A0

2k) = −(ck + ek)(bk + fk). Since b, c, e, f are all
non-zero, then A0

2k (with odd k) is invertible.
Lemma 2: For all even n = 2k with even k,

det(A0
2k) = −(ck − ek)(bk − fk). Hence

(i) If c 6= e and b 6= f , then A0
2k (with even k) is invert-

ible,
(ii) If c = e or b = f , then A0

2k (with even k) is non-
-invertible.
Hence, when n is even, the determinant of matrix A0

n

is not non-zero for all k, so another method for determin-
ing the reversibility of the CA is needed. This method
that presents an algorithm for determining the rank of
the rule matrix is given in the sequel. To determine the
reversibility of the CA, we study the determinant of the
submatrices B0

n and C0
n.

Lemma 3: For all even n, if the matrix B0
n is given as

Eq. (1), then det(B0
n) = dn. Since, d 6= 0, B0

n is invert-
ible.
Lemma 4: For all even n, if the matrix C0

n is given as
Eq. (1) then det(C0

n) = an. Since a 6= 0, C0
n is invertible.

Let Ti denote the i-th row and Ti[j] denote the j-th
entry of the i-th row of matrix T , respectively. By
de�nition, we have

T1 =
[
A0, B0, 0, 0, 0, 0, . . . , 0, C0

]
∈Mn×n(Z3)

m,

T2 =
[
C0, A0, B0, 0, 0, 0, 0, . . . , 0

]
∈Mn×n(Z3)

m,
...

...

Tm =
[
B0, 0, 0, 0, 0, 0, . . . , C0, A0

]
∈Mn×n(Z3)

m. (3)

De�ne the σ map as follows: σ:Mn×n(Z3)
m →

Mn×n(Z3)
m. σ([A1, A2, A3, . . . , Am−1, Am]) =

[0n, A1, A2, A3, . . . , Am−1] where 0n represents
the zero square matrix of order n. Fur-
ther, if A = [A1, A2, A3, . . . , Am−1, Am], then
A[i] = Ai represents the i-th entry of A. Further,
B[A1, A2, . . . , Am] = [BA1, BA2, . . . , BAm].
Theorem 3 (Even): Let the matrix (T 0

R)mn×mn be
given as Eq. (1) and

T
(1)
1 = T1, T

(k+1)
1 = −T (k)

1 [k](C0)−1σ(k−1)(T2)

+ T
(k)
1 for 1 ≤ k ≤ m− 2,

T (1)
m = Tm, T

(k+1)
m = −T (k)

m [k](C0)−1σ(k−1)(T2)

+ T (k)
m for 1 ≤ k ≤ m− 2.

De�ne the following 2 × 2 block matrix consisting of
blocks of square matrices of order n.

Q0 =

(
T

(m−1)
1 [m− 1] T

(m−1)
1 [m]

T
(m−1)
m [m− 1] T

(m−1)
m [m]

)
.

Then,

rank(T 0
R)mn×mn = (m− 2)n+ rank(Q0).

A straightforward corollary which gives a lower bound
for the rank of a cellular automaton is presented below.
Corollary 1: Let (T 0

R)mn×mn be a cellular automaton
de�ned above. Then, (m − 2)n ≤ rank((T 0

R)mn×mn) ≤
mn.

3.2. The rank of T 1
R

Lemma 5: If n ≥ 3 is odd (choose n = 2k + 1), then
det(A1

n=2k+1) = bkck+1 + ek+1fk. Since b, c, e, f are all

non-zero, A1
n is invertible.

Lemma 6: For all odd n, if the matrix is given as
Eq. (2) then det(B1

n) = dn. Since d 6= 0, B1
n is invertible.

Lemma 7: If n ≥ 3 is odd (choose n = 2k + 1), then
det(C1

n=2k+1) = a2k−1(a2 − bf). If a2 6= bf then C1
n is

invertible.
By using the result from the fundamental theorem of

linear algebra, the rank of a matrix is equal to the rank
of its transpose, i.e. rank(T 1

R) = rank((T 1
R)

T). Then, the
matrix T 1

R can be viewed as follows for easy computation
of its rank. A matrix and its transpose have the same
determinant. This implies that (A1)T and (B1)T are also
full rank matrices. Let us now choose Ti for the rank
computation T 1

R as follows.

T1 =
[
(A1)T, (C1)T, 0, 0, . . . , 0, (B1)T

]
∈Mn×n(Z3)

m,

T2 =
[
(B1)T, (A1)T, (C1)T, 0, . . . , 0, 0

]
∈Mn×n(Z3)

m,
...

...

Tm =
[
(C1)T, 0, . . . , 0, 0, (B1)T, (A1)T

]
∈Mn×n(Z3)

m.

Hence we obtain the following result.
Theorem 4 (Odd). Let the matrix (T 1

R)mn×mn be
given as in Eq. (2). Let

T
(1)
1 = T1, T

(k+1)
1 = −T (k)

1 [k]((B1)T)−1σ(k−1)(T2)

+ T
(k)
1 for 1 ≤ k ≤ m− 2,

T (1)
m = Tm, T

(k+1)
m = −T (k)

m [k]((B1)T)−1σ(k−1)(T2)

+ T (k)
m for 1 ≤ k ≤ m− 2.

De�ne the following 2 × 2 block matrix consisting of
blocks of square matrices of order n

Q1 =

(
T

(m−1)
1 [m− 1] T

(m−1)
1 [m]

T
(m−1)
m [m− 1] T

(m−1)
m [m]

)
.

Then, we have rank(T 1
R)mn×mn = (m− 2)n+ rank(Q1).

4. Conclusion

In this paper, we have studied 2-dimensional �nite
cellular automata de�ned by hexagonal local rule with
periodic boundary over the �eld Z3. We have con-
structed the rule matrix corresponding to the hexago-
nal cellular automata. For some given coe�cients and
the number of columns of hexagonal information matrix,
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we have proved that the hexagonal cellular automata are
reversible. We are planning to give some applications re-
lating to these cellular automata over the prime �eld Fp,
p is a prime number. Our future work will continue in
this direction.
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