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The aim of this paper is to extend the results of Ganikhodjaev et al. to the three state Potts model with
competing nearest-neighbor, prolonged next-nearest-neighbor and two-level triple neighbor interactions on a Cayley
tree for order 3 and compare with the phase diagrams obtained in Temir et al. and to study modulated phases
arising from the frustration e�ects introduced by nearest-neighbor, prolonged next-nearest-neighbor and two-level
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1. Introduction

It is known that the Potts model has many applica-
tions due to appearance of nontrivial magnetic orderings.
Consideration of the Potts model with competing inter-
actions on Cayley tree (the Bethe lattice) is an interest-
ing topics of statistical mechanics. A phase diagram of
a model describes a morphology of phases, stability of
phases, transitions from one phase to another and corre-
sponding transitions lines. Systems exhibiting spatially
modulated structures, commensurate or incommensurate
with the underlying lattice, are of current interest in con-
densed matter physics [1]. The Ising (ANNNI) model,
originally introduced by Elliot [2] to describe the sinu-
soidal magnetic structure of erbium, and the chiral Potts
model, introduced by Ostlund [3] and Huse [4] in connec-
tion with monolayers adsorbed on rectangular substrates,
have been studied extensively by a variety of techniques.
In the case of the Ising model with compet-

ing nearest-neighbor interactions and prolonged next-
nearest-neighbor interactions Vannimenus [5] was able
to �nd new modulated phases, in addition to the ex-
pected paramagnetic and ferromagnetic ones. Moreover
a detailed study of its properties was carried out with
essentially exact results, using rather simple numerical
methods.
A Potts model as a generalization of the Ising model

on the Cayley tree with competing interactions appeared
in a pioneering work of Vannimenus [5] has recently
been studied extensively (see [6�9]). On the Cayley
tree one can consider two types of next-nearest-neighbors
(triple neighbors): prolonged and one-level next-nearest-
neighbors (respectively two-level triple neighbors).
In this paper, we are going to study the phase dia-

gram for the Potts model on a Cayley tree for order 3
with competing nearest-neighbor interactions Jnn, pro-
longed next-nearest neighbor interactions Jpn and two
level triple neighbor interactions Jtt. At vanishing tem-
perature, the phase diagram is fully determined for all
values and signs of Jnn, Jpn and Jtt. The aim of this

paper is to extend the results of [6], [7] and [8] to the
Potts model with competing nearest- neighbor, prolonged
next-nearest-neighbor and two-level triple neighbor inter-
actions.

2. The model and basic equations

Now, we give some basic de�nitions of the Cayley tree
and our using model as follows. A Cayley tree Γ k of order
k ≥ 1 is an in�nite tree, i.e., a graph without cycles with
exactly k+ 1 edges issuing from each vertex. Let denote
the Cayley tree as Γ k = (V,Λ), where V is the set of
vertices of Γ k, Λ is the set of edges of Γ k. For a �xed
x0 ∈V we set Wn = {x ∈ V |d(x, x0) = n},

Vn = {x ∈ V |d(x, x0) ≤ n} =

n⋃
i=0

Wi

and Ln denotes the set of edges in Vn. The �xed vertex
x0 is called the 0-th level and the vertices inWn are called
the n-th level.
For the sake of simplicity we put |x| = d(x, x0), x ∈V.

Two vertices x and y, x, y ∈V are called nearest-neighbors
if there exists an edge l ∈ Λ connecting them, which is
denoted by l = 〈x, y〉. The distance d(x, y), x, y ∈V,
on the Cayley tree Γ k, is the number of edges in the
shortest path from x to y. Two vertices x, y ∈V are
called the next-nearest-neighbors if d(x, y) = 2. The
next-nearest-neighbor vertices x and y are called pro-
longed next-nearest-neighbors if |x| 6= |y| and is denoted
by 〉x̃, y〈. The next-nearest-neighbor vertices x and y
are called prolonged next-nearest-neighbors if |x| = |y|
and is denoted by 〉x, y〈. The next-nearest-neighbor ver-
tices x, y ∈V that are not prolonged are called one-level
next-nearest-neighbors since |x| = |y| and are denoted
by 〉 ¯x, y〈. Three vertices x, y and z are called a triple
of neighbors and they are denoted by 〈x, y, z〉, if 〈x, y〉,
〈y, z〉 are nearest neighbors. The triple of vertices x, y, z
is called prolonged if x ∈ Wn, y ∈ Wn+1 and z ∈ Wn+2

for some nonnegative integer n and is denoted by 〈x, z〉.

(476)
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In this paper, we consider a semi-in�nite Bethe lattice
Γ 3
+ of order 3, i.e. an in�nite graph without cycles with

3 edges issuing from each vertex except for x0 which has
only 3 edges. We plot the phase diagrams corresponding
to some given parameters of model. We will compare our
models with previous phase regions obtained in [6�9].

2.1 The Model

For Potts model with spin values in Φ = 〈1, 2, 3〉 the
relevant Hamiltonian with competing nearest-neighbor,
prolonged next-nearest-neighbor and two-level triple in-
teractions has the form

H(σ) = −Jtt
∑
〈x,y,z〉

δσ(x)σ(y)σ(z)

−Jpn
∑
〉x̃,y〈

δσ(x)σ(y)Jnn
∑
〈x,y〉

δσ(x)σ(y), (1)

where Jtt, Jpn, Jnn ∈ IR are coupling constants and δ is
the Kronecker symbol. Here, the generalized Kronecker's
symbol δσ(x)σ(y)σ(z) is

δσ(x)σ(y)σ(z) =

{
1, σ(x) = σ(y) = σ(z),

0, otherwise.
(2)

2.2 Recurrence equations

In order to produce the recurrent equations, we con-
sider the relation of the partition function on Vn to the
partition function on subsets of Vn−1. Given the initial
conditions on V1, the recurrence equations indicate how
their in�uence propagates down the tree. In order to pro-
duce the recurrent equations, we consider the relation of
the partition function on Vn to the partition function on
subsets of Vn−1. Given the initial conditions on V1, the
recurrence equations indicate how their in�uence propa-
gates down the tree. Let

Z(n)

(
i1 i2 i3
i0

)
be a partition function on Vn where the spin in the root
x0 is where the spin in the root x0 is i0 and the three spins
in the proceeding ones are i1, i2, and i3, respectively.
There are 34 = 81 di�erent partition functions

Z(n)

(
i1 i2 i3
i0

)
and the partition function Z(n) in volume V n can be
written as follows:

Z(n) =

3∑
i0,i1,i2,i3=1

Z(n)

(
i1 i2 i3
i0

)
, (3)

where i1, i0, i2, i3 ∈ 〈1, 2, 3〉. Next, if it is calculated then
we have the following equations

Z(n)

(
111

1

)
= a9c3Z(n)(1, 1)Z(n)(1, 1)Z(n)(1, 1),

Z(n)

(
112

1

)
= a3c2Z(n)(1, 1)Z(n)(1, 1)Z(n)(1, 2),

Z(n)

(
113

1

)
= a3c2Z(n)(1, 1)Z(n)(1, 1)Z(n)(1, 3),

Z(n)

(
121

1

)
= a3c2Z(n)(1, 1)Z(n)(1, 1)Z(n)(1, 2),

Z(n)

(
122

1

)
= cZ(n)(1, 1)Z(n)(1, 2)Z(n)(1, 2),

Z(n)

(
123

1

)
= cZ(n)(1, 1)Z(n)(1, 2)Z(n)(1, 2),

Z(n)

(
131

1

)
= a3c2Z(n)(1, 1)Z(n)(1, 2)Z(n)(1, 2),

Z(n)

(
222

1

)
= Z(n)(1, 2)Z(n)(1, 2)Z(n)(1, 2)

. . .

Z(n)

(
111

2

)
= Z(n)(2, 1)Z(n)(2, 1)Z(n)(2, 1),

Z(n)

(
112

2

)
= cZ(n)(2, 1)Z(n)(2, 1)Z(n)(2, 2),

Z(n)

(
222

2

)
= a9c2Z(n)(2, 2)Z(n)(2, 2)Z(n)(2, 2),

Z(n)

(
333

2

)
= Z(n)(2, 3)Z

(n)
(2, 3)Z(n)(2, 3),

Z(n)

(
332

3

)
= a3c2Z(n)(3, 2)Z(n)(3, 3)Z(n)(3, 3),

Z(n)

(
333

3

)
= a9c2Z(n)(3, 3)Z(n)(3, 3)Z(n)(3, 3).

It is reasonable, though, to assume that the di�erent
branches are equivalent, as is usually done for models on
trees. We can show that there are only �ve independent

variables, namely Z(n)

(
111

1

)
, Z(n)

(
222

1

)
, Z(n)

(
111

2

)
,

Z(n)

(
222

2

)
, Z(n)

(
333

2

)
, and introduce �ve new vari-

ables u
(n)
1 = 3

√√√√Z(n)

(
111

1

)
, u

(n)
2 = 3

√√√√Z(n)

(
222

1

)
,

u
(n)
3 = 3

√√√√Z(n)

(
111

2

)
, u

(n)
4 = 3

√√√√Z(n)

(
222

2

)
, u

(n)
5 =

3

√√√√Z(n)

(
333

2

)
, we can show new calculations as follows



478 S. Temir, N. Ganikhodjaev, S. Uguz, H. Akin

u
(n+1)
1 = a3c

[
3∑
i=0

(
3

i

)(
bu

(n)
1

)3−i
+
(

2u
(n)
2

)i
a

3i(i−3)
2

]

u
(n+1)
2 =

3∑
i=0

(
3

i

)
(u

(n)
3 )ibi

×

3−i∑
j=0

(
3− i
j

)(
u
(n)
4

)j (
u
(n)
5

)3−i−j
a

3j(j−3)
2


u
(n+1)
3 =

3∑
i=0

[(
u
(n)
1

)3−i (
u
(n)
2

)i
(b+ 1)ia

3i(i−3)
2

]

u
(n+1)
4 = a3c

{
3∑
i=0

(
3

i

)
(bu

(n)
4 )ia

3i(i−3)
2

×
3−i∑
j=0

[(
3− i
j

)(
u
(n)
3

)j (
u
(n)
5

)3−i−j]
u
(n+1)
5 =

3∑
i=0

(
3

i

)
(u

(n)
5 )ibi

×

3−i∑
j=0

(
3− i
j

)(
u
(n)
4

)j (
u
(n)
3

)3−i−j
a

3j(j−3)
2

 ,
where c = exp(α−1), b = exp(−α−1β) and a =
exp((3α)−1γ).
The total partition function is given in terms of (ui) by

Z(n) = u
(n)3

1 + 2(u
(n)3

3 + u
(n)3

4 + u
(n)3

5 ) + 6a−3u
(n)
1 u

(n)
2

+12a−3u
(n)
1 u

(n)2

2 + 8u
(n)3

2 + 6a−3u
(n)2

3 u
(n)
4 + 6u

(n)2

3 u
(n)
5

+7a−3u
(n)
3 u

(n)2

4 + 12a−3u
(n)
3 u

(n)
4 u

(n)
5 + 6u

(n)
3 u

(n)2

5

+5a−3u
(n)2

4 u
(n)
5 + 6a−3u

(n)
4 u

(n)2

5

We note that, in the paramagnetic phase (high symmetry

phase), u
(n)
1 = u

(n)
4 , u

(n)
2 = u

(n)
3 = u

(n)
5 . For discussing

the phase diagram, the following choice of reduced vari-
ables is convenient (see Refs. [6�9]):

x =
2u2 + u3 + u5

u1 + u4
, y1 =

u1 − u4
u1 + u4

,

y2 =
u2 − u3
u1 + u4

, y3 =
u2 − u5
u1 + u4

. (4)

The variable x is just a measure of the frustration of the
nearest-neighbor bonds and is not an order parameter
like y1, y2, y3. The relations now have following form:

x′ =
A1(x, y1, y2, y3)

D(x, y1, y2, y3)
, y′1 =

A2(x, y1, y2, y3)

D(x, y1, y2, y3)

y′2 =
A3(x, y1, y2, y3)

D(x, y1, y2, y3)
, y′3 =

A4(x, y1, y2, y3)

D(x, y1, y2, y3)
, (5)

where we obtain the functions A1, A2, A3, A4 and D as
follows: A1 = 2[b3(x + y3 − 3y2)3 + 6a−3b2(1 − y1)(x +
y3−3y2)2 +3b2(x+y3−3y2)2(x+y2−3y3)+8(1−y1)3 +
12ba−3(1− y1)(x+ y3 − 3y2)(x+ y2 − 3y3) + 3b(x+ y3 −

3y2)(x + y2 − 3y3)2 + 12ba−3(1 − y1)2(x + y3 − 3y2) +
12a−3(1 − y1)2(x + y2 − 3y3) + 6a−3(1 − y1)(x + y2 −
3y3)2 + (x+y2−3y3)3] + [8(1 +y1)3 + 12a−3(1 +y1)2(b+
1)(x+y2 +y3) + 6a−3(1 +y1)(b+ 1)2(x+y2 +y3)2 + (1 +
b)3(x+ y2 + y3)3] + [(x+ y3 − 3y2)3 + 6a−3(1− y1)(x+
y3 − 3y2)2 + 12a−3(1− y1)2(x+ y3 − 3y2) + 3b(x+ y3 −
3y2)2(x + y2 − 3y3) + 12ba−3(1 − y1)(x + y3 − 3y2)(x +
y2 − 3y3) + 12ba−3(1− y1)2(x+ y2 − 3y3) + 3b2(x+ y2 −
3y3)2(x+y3−3y2)+6b2a−3(1−y1)(x+y2−3y3)2 +8(1−
y1)3 + b3(x+ y2 − 3y3)3],

A2 = a3c[8b3(1 + y1)3 + 24b2a−3(1 + y1)2(x+ y2 + y3) +
24ba−3(1 + y1)(x+ y2 + y3)2 + 8(x+ y2 + y3)3]−a3c[(x+
y3 − 3y2)3 + 6ba−3(1 − y1)(x + y3 − 3y2)2 + 3(x + y3 −
3y2)2(x + y2 − 3y3) + 12b2a−3(1 − y1)2(x + y3 − 3y2) +
12ba−3(1− y1)(x+ y2 − 3y3)(x+ y3 − 3y2) + 3(x+ y3 −
3y2)(x+ y2− 3y3)2 + 8(1− y1)3b3 + 12b2a−3(1− y1)2(x+
y2−3y3)+6ba−3(1−y1)(x+y2−3y3)2 +(x+y2−3y3)3],

A3 = [b3(x+ y3−3y2)3 + 6a−3b2(1− y1)(x+ y3−3y2)2 +
3b2(x+y3−3y2)2(x+y2−3y3)+8(1−y1)3 +12ba−3(1−
y1)(x + y3 − 3y2)(x + y2 − 3y3) + 3b(x + y3 − 3y2)(x +
y2 − 3y3)2 + 12ba−3(1− y1)2(x + y3 − 3y2) + 12a−3(1−
y1)2(x+y2−3y3)+6a−3(1−y1)(x+y2−3y3)2+(x+y2−
3y3)3]− [8(1 +y1)3 + 12a−3(1 +y1)2(b+ 1)(x+y2 +y3) +
6a−3(1+y1)(b+1)2(x+y2 +y3)2 +(1+b)3(x+y2 +y3)3],

A4 = [b3(x+ y3−3y2)3 + 6a−3b2(1− y1)(x+ y3−3y2)2 +
3b2(x+y3−3y2)2(x+y2−3y3)+8(1−y1)3 +12ba−3(1−
y1)(x+y3−3y2)(x+y2−3y3)+3b(x+y3−3y2)(x+y2−
3y3)2+12ba−3(1−y1)2(x+y3−3y2)+12a−3(1−y1)2(x+
y2−3y3)+6a−3(1−y1)(x+y2−3y3)2 +(x+y2−3y3)3]−
[(x+y3−3y2)3 +6a−3(1−y1)(x+y3−3y2)2 +12a−3(1−
y1)2(x + y3 − 3y2) + 3b(x + y3 − 3y2)2(x + y2 − 3y3) +
12ba−3(1− y1)(x+ y3 − 3y2)(x+ y2 − 3y3) + 12ba−3(1−
y1)2(x + y2 − 3y3) + 3b2(x + y2 − 3y3)2(x + y3 − 3y2) +
6b2a−3(1−y1)(x+y2−3y3)2+8(1−y1)3+b3(x+y2−3y3)3],

D = a3c[8b3(1 + y1)3 + 24b2a−3(1 + y1)2(x + y+2 y3) +
24ba−3(1 + y1)(x+ y2 + y3)2 + 8(x+ y2 + y3)3] +a3c[(x+
y3 − 3y2)3 + 6ba−3(1 − y1)(x + y3 − 3y2)2 + 3(x + y3 −
3y2)2(x + y2 − 3y3) + 12b2a−3(1 − y1)2(x + y3 − 3y2) +
12ba−3(1− y1)(x+ y2 − 3y3)(x+ y3 − 3y2) + 3(x+ y3 −
3y2)(x+ y2− 3y3)2 + 8(1− y1)3b3 + 12b2a−3(1− y1)2(x+
y2−3y3)+6ba−3(1−y1)(x+y2−3y3)2 +(x+y2−3y3)3].

Fig. 1. The phase diagrams of the model for k = 3,
γ = 0 (left) and γ = 0.5 (right), respectively.
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Fig. 2. The phase diagrams of the model for k = 3,
γ = 0.7 (left) and γ = 1 (right), respectively.

Fig. 3. The phase diagrams of the model for k = 3,
γ = −0.5 (left) and γ = −1 (right), respectively.

The system of four equations �nally obtained (5) is
essentially complicated than the similar basic equations
(1,3,4). Analytic investigation of Eq. (5) will be discussed
later on. Below we use numerical methods to study
its detailed behavior. The recursion relations (5) pro-
vide us the numerically exact phase diagram in (T/Jnn,
−Jpn/Jnn, Jtt/Jnn) space. Let T/Jnn = α, −Jpn/Jn =
β, Jtt/Jnn = γ and respectively c = exp(α−1), b =
exp(−α−1β) and a = exp((3α)−1γ). Starting from initial
conditions

σ̄(n)

(
V

Vn

)
σ̄(n)

(
V

Vn

)
≡ 1,

x(1) =
2b2 + a2c2 + 1

a3c3b2 + ac
, y

(1)
1 =

a2c2b2 − 1

a2c2b2 + 1
,

y
(1)
2 =

b2 − a2c2

a3c3b2 + ac
, y

(1)
3 =

a2c2 − 1

a3c3b2 + ac
,

one iterates the recurrence relations (5) and observes
their behavior after a large number of iterations. In the
simplest situation a �xed point (x∗, y∗1 , y

∗
2 , y
∗
3) is reached.

After a large number of iterations, if the �xed point is
satis�ed as y∗1 = 0, y∗2 = 0, y∗3 = 0, then it corresponds to
a paramagnetic phase. If y∗1 , y

∗
2 , y
∗
3 6= 0, the phase dia-

gram corresponds to the ferromagnetic phase. Similarly,
we obtain the other phase regions. For the other cases,
see the Ref. [6�9].

4. Conclusions

In this paper, we have studied the phase diagrams of
the Potts model on the Cayley tree of order three. In or-
der to calculate the recurrences equations are much more
di�cult than the two order case. Until now, the diagrams
of Potts have been investigated for the Cayley tree of or-
der two [6]-[9]. In this case, we have seen that the phase
diagrams mainly have changed. We have observed that
the prolonged interaction has strong e�ects on the phase
diagrams. The Potts model on the Cayley tree of third
order, with competing interactions between the nearest-
neighbor, prolonged next-nearest neighbor and two-level
triple neighbors have been studied. The diagrams con-
sist of six phases: ferromagnetic, paramagnetic, phase
with period p = 2 that corresponds to antiferromagnetic
phase, with period p = 4 that corresponds to so-called
antiphase, with period p = 3 and modulated phase with
p > 12. We have obtained some similar phase diagrams
as [8], but some of �gures obtained from [8] are di�erent
with respect to γ. If we select negative γ then the period
p = 4 arises in the �rst and the third quadrants. In case
of positive γ, in the third quadrant, if γ increases, the
period 4 decreases. In the next studies the magnetiza-
tion and Lyapunov exponents will be investigated with
the help of a recursion relation technique.
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