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We used a theory of thermo-hydrodynamics in quantum Hall system observed on a two-dimensional system in
high magnetic �elds at low temperatures, to investigate the electron temperature in the linear response regime. The
variation of electron temperature exhibits an antisymmetric distribution of the incompressible strips. According
to this result, we obtain e�ects of the electron temperature on the current density distribution using a Thomas�
Fermi�Poisson approximation. We observe that incompressible strips change with increasing and/or decreasing the
electron temperature with regard to the lattice temperature.
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1. Introduction

Apart from sample properties, such as electron den-
sity, mobility and sample geometry, the temperature of
the sample and the electrical current �ow through it are
important aspects of the integer quantum Hall e�ect. In
this e�ect, the Hall resistance RH of the i-th plateau of a
fully-quantized two-dimensional electron system (2DES)
has the value RH(i) = h/(ie2), where h is the Planck
constant, e is the elementary charge, and i is an integer
[1, 2]. The physical quantities, as the temperature, the
strength of the magnetic �eld and the imposed current
determine the existence of incompressible strip (IS) that
carries the imposed current in a quantized number of lev-
els. The width and the position of IS are closely related
to these physical dependences [3, 4].

In our previous work, we calculated the variation
of the electron temperature in the linear response
regime, employing the thermo-hydrodynamic theory in
quantum Hall systems (QHS). The theory of thermo-
-hydrodynamics is bound by conservation of electron
number and thermal �ux densities, following Akera and
his co-workers [5, 6]. We imposed realistic boundary con-
ditions and therefore described experimental systems ac-
curately. We observed that the electron temperature de-
viation oscillates as a function of the lattice temperature
in the ISs. According to this result, in this study we in-
vestigate the current density pro�le of 2DES in the pres-
ence of an electron temperature using the self-consistent
Thomas�Fermi�Poisson approximation (TFPA) [7]. The
current density is calculated from a local version of the
Ohm law. This theoretical work con�rms the experimen-
tal evidence and shows that the current �ows in the ISs,
in which the local longitudinal resistivity vanishes. An-
other result shows that the e�ect of electron temperature
deviation on the current density distribution is so strong,
that ISs change completely according to the ISs obtained
at a constant lattice temperature.

2. Model

Following previous works, we consider the Hall bar as
a 2DES in the x�y plane that is in a perpendicular mag-
netic �eldB = (0, 0, B) [7, 8]. The electron density nel(y)
are con�ned by the con�nement potential Vbg(y) due to
donors which are distributed uniformly in the sample. To
describe the experimental geometries, we impose bound-
ary conditions such that two metallic gates reside at the
physical edges, following Chklovskii et al. The e�ective
potential within the semi-classical approximation is

V (y) = Vbg(y) + VH(y) (1)

with the con�nement potential and the Hartree potential

Vbg(y) = −E0
bg

√
1−

(y
d

)2
,

VH(y) =
2e2

κ

∫ d

−d
dy′K(yy′)nel(y

′). (2)

Here E0
bg is the pinch-o� energy which de�nes the min-

imum of the bare con�nement potential [9], κ is the di-
electric constant, n0 is the donor density and 2d is the
sample width. The Hartree potential due to the 2DES is
determined via Poisson's equation by the electron density
nel(y). Kernel K(y, y′) solves Poisson's equation under
the given boundary conditions [8]. The electron density
is, in turn, determined by the e�ective potential V (y)
and calculated in the Thomas�Fermi approximation

nel(y) =

∫
dED(E)f(E + V (y)− µec), (3)

with D(E) � the density of states (DOS), f(E) =
1/[exp((ε − µec)/kBTe) + 1] � the Fermi function, kB
� the Boltzmann constant, Te � the electron tempera-
ture and µec � the constant electrochemical potential in
the equilibrium state [8, 10].
In this work, we apply the local equilibrium approx-

imation, used extensively in many systems [11]. In lo-
cal equilibrium, the lattice temperature TL remains un-
changed by the presence of the applied current. In the
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presence of a dissipative current I =
∫ d

−d dyjnelx(y), the

electrochemical potential µec(r) depends on position and
its gradient E = ∇µec(r)/e satis�es the local Ohm law
ρ̂(r)jnel

(r) = E(r) with resistivity tensor.
In the previous work, we employed the theory of

thermo-hydrodynamics described by equations of conser-
vation with electron number and thermal �ux densities
in QHS to obtain the variations of the electron tempera-
ture in the linear-response regime [12]. We consider two
hydrodynamic equations and assume that the electron
number and the total energy of the system are conserved.
The equations of electron number conservation and en-
ergy conservation are formulated by

∂nel
∂t

= −∇·jnel
, (4)

∂ε

∂t
= −∇·jε − PL, (5)

respectively. Here jnel
is the number �ux density, jε

is the energy �ux density and PL is the energy loss per
unit area due to the heat transfer between electrons and
phonons [11]. The time evolution of the entropy density
s is derived by using Eqs. (4), (5), and by the fundamen-
tal thermodynamical equation

Te
∂s

∂t
= −∇·jq −∇µec · jnel

− PL, (6)

where the thermal �ux density jq is described by

jq = jε − µecjnel
. (7)

We assume translation invariance in the x direction.
Therefore the electron temperature Te and the chemical
potential µ are independent of x direction. Also electric
�eld Ex in x direction becomes eEx = ∇x(∆V ) because
of ∇x(∆µ) = 0. After these conditions two equations of
conservation become

∆jnel
(y) = 0 (|y| < d), (8)

∇y(∆jq(y)) + eExjnel
(y) + PL = 0, (9)

with the deviations from the equilibrium values [13]. In
the linear response regime the energy loss PL is written
as PL = Cp(Te − TL). Here,

Cp = C0
p

∫
ρ(ε)

(
−∂f(εN , µec, Te)

∂ε

)
dε (10)

includes the density of state ρ(ε) written as

ρ(ε) =
1

πl2

∑
N

1√
πΓL

exp

(
− (εN − ε)2

Γ 2
L

)
(11)

with the Landau level broadening ΓL. The coe�cient C0
p

is de�ned by the transition rate due to electron phonon
scattering and is estimated to be 1.4×10−5kBE

2
0/~ from

the experimental results by Komiyama et al. [14].

3. Results and discussion

Figure 1 presents the calculated results of the elec-
tron temperature for several values of coe�cients, C0

p =

3×10−2, 5×10−2 and 8×10−2 at (a) ν(0) = 2.0 and (b)
ν(0) = 2.5. The lattice temperature is TL = 0.15E0

F/kB
with the Fermi energy at the center E0

F = 9.615 meV.

The variation of the electron temperature without elec-
tron phonon interaction is larger than the variation of the
electron temperature with the interactions, since a part
of the energy is converted to the heat energy between
electrons and phonons because of the interaction.

Fig. 1. The electron temperature versus position, cal-
culated for di�erent ν(0) at �xed lattice temperature
TL = 0.15E0

F/kB. The sample parameters are width
2d = 2.2 µm, the density of donor n0 = 3.6×1011 cm−2

and the Fermi energy E0
F = 9.615 meV corresponding

to the electron density at the center. The inset shows
the enlarged electron temperature for the center of the
sample.

We show the changes in the electron temperature Te
with increasing the �lling factor at �xed lattice temper-
ature TL = 0.03E0

F/kB in Fig. 2. This �gure shows that
the electron temperature oscillates as a function of the
lattice temperature in the ISs. Also it is shown that the
electron temperature strongly depends on the �lling fac-
tor. Since ISs are inversely proportional to the �lling
factor and approach the sample edge, the ISs become
smaller slowly and move towards the sample edges with
increasing the �lling factor.

Fig. 2. The electron temperature versus position, cal-
culated for ν(0) = 2.4, 2.5 and 2.7 at �xed lattice tem-
perature TL = 0.03E0

F/kB. The solid and dash lines
represent the results for without energy loss and with
energy loss, respectively.
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In Fig. 3a, the electron temperature and lattice tem-
perature are taken into account to obtain the current
density pro�le. When the lattice temperature is taken
into account, ISs on both sides of the sample are the
same since TL is uniform in the system. However in the
presence of electron temperature, left side of the sam-
ple heats up and the right side of the sample is cooled
down. Therefore, interestingly, ISs show di�erent behav-
ior. This e�ect is more evident at ν(0) = 2.4, so that the
results are shown for ν(0) = 2.4. As we know, the widths
of ISs increase monotonically with decreasing tempera-
ture. The result shows that when the electron tempera-
ture becomes smaller than the lattice temperature (left
side), the 2DES develops ISs with low longitudinal resis-
tivity and the current density is increasingly con�ned to
the ISs. Therefore, the dash peak is larger than the solid
peak on the left hand side. On the other hand, the other
side of the sample (right side) is opposite.

Fig. 3. The current density versus position for (a)
ν(0) = 2.4 calculated within the lattice temperature
and electron temperature, (b) ν(0) = 2.4, 2.5 and 2.7
calculated within electron temperature at �xed lattice
temperature TL = 0.03E0

F/kB, PL 6= 0.

In Fig. 3b, we consider the energy loss PL to investi-
gate the current density pro�le using the electron tem-
perature. As expected, with increasing the center of the
�lling factor ν(0), the widths of ISs become smaller and
move from the center towards the edges. The electron
temperature becomes larger than the lattice temperature
on the right hand side. Therefore IS at the right side
becomes narrow for each ν(0) depending on the electron
temperature. Since the variation of electron temperature

is much bigger, this di�erence is larger at ν(0) = 2.4, as is
seen in Fig. 2. The variation of the electron temperature
becomes smaller at ν(0) = 2.7, therefore the di�erence
between two ISs nearly disappears.
In summary, we calculate the current density of 2DES

in the presence of the electron temperature using the self-
-consistent TFPA. We observe that the widths of the ISs
depend strongly on the spatial variation of the electron
temperature. ISs change with increase and/or decrease
of the electron temperature with regard to the lattice
temperature. Also with increase of the �lling factor, the
deviation of the electron temperature decreases. There-
fore the width of ISs becomes smaller and moves from
the center towards the sample edges.
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