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In this paper, a nonlocal beam model is developed and applied to investigate flapwise vibration characteristics
of a rotating single-walled carbon nanotube on a Pasternak foundation. Differential quadrature method is used to
solve equation of motion. The effects of small-scale factor, angular velocity and elastic foundation on the natural
frequencies are examined and discussed. It is shown that small-scale effect plays an important role in the vibration

response of a rotating nanotube.
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1. Introduction

In recent years, carbon nanotubes (CNT) have be-
come the central point of researches in computational
nanomechanics. Vibration analysis is of fundamental
importance in the design of nanoelectromechanical sys-
tems. The state of the art on the vibration analyses
of nanotubes can be found in a review work by Gibson
et al. [1]. Beams supported on elastic foundations are
usually incorporated in the design of air craft structures
where CNTs are very important and useful in immense
applications. Mechanical characteristics of CNTs embed-
ded in polymer environment have been studied in [2].
The effect of elastic foundation on the single-walled CNT
(SWCNT) vibration has been studied by Wang et al. [3].
Mustapha and Zhong investigated vibrations of an axi-
ally loaded SWCNT embedded in a two-parameter elastic
medium [4].

In this study, vibration characteristics of a rotating
single-walled cantilever carbon nanotube embedded in a
deformable surrounding medium are investigated. The
SWCNT is modeled as a nonlocal Rayleigh beam of
length L and Pasternak-type foundation model is em-
ployed to simulate the interaction of SWCNT with sur-
rounding elastic medium. The governing differential
equation for SWCNT vibration is solved using differen-
tial quadrature (DQ) method. It has been shown that
the fundamental frequency of a rotating SWCNT can-
tilever strongly depends on the nonlocal parameter, an-
gular velocity and stiffness of the surrounding medium.
The analyses further illustrates that the nonlocal param-
eter has different effects on different vibration modes.

2. Governing equations

According to Eringen’s theory, the stress field at one
point in an elastic continuum depends on the strains at
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all other points of the body. The basic equations for
a homogeneous nonlocal elastic body are presented by
Eringen [5].
The one-dimensional nonlocal relation for a general
Rayleigh beam can be written as
2 nl

0"(2) ~ (e0a)? 5% = Be(a) 0

where o"(x) is the nonlocal stress, epa is the nonlocal
parameter, E is the Young modulus and ¢(z) is the non-
local strain [5].
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Fig. 1. Configuration of a rotating Euler-Bernoulli
SWCNT on a Pasternak foundation.

Shown in Fig. 1 is a SWCNT nanocantilever of
length L, which is fixed at point O to a rigid hub that
rotates at a constant rotational speed and rested on a
Pasternak foundation. Based on the Eringen nonlocal
theory, the Euler-Lagrange equation for the Rayleigh
beam is obtained as [4]:
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where M., w, q, pA, pI, Kg, and A are the resultant
moment stress, transverse displacement, tension force,
mass per unit length, rotary inertia, shear modulus pa-
rameter of the deformable medium and cross-sectional
area, respectively. The centrifugal tension force due to
the rotation of the cantilever, N,,, at a distance x from
the origin (Fig. 1) is given by
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Nyw = / pAQ*(r 4 z)da, (3)
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where (2 is the angular velocity of the nanotube cantilever
and r is the hub radius.

Using Egs. (2) and (3), the governing differential equa-
tion for the flapwise bending vibration of the rotating
nanotube can be obtained as

0*w 9 9 o, 0%w
EI@ + pAww + (ega)”pAw e
o* 0?
— (eoa)QprQl + prQ—w

2
Oz ox? pAL

0 0?
X {(—r - x)a—: +7(L —z)+0.5(L% - xg)&;}}
0*w OBw

+ (ega)?pAs2? { - 3@ +3(—r— x)%

84

+ [r(L - 2) +0.5(L% — 2?)] a;:}
O%w 0w
2 _

+ (eoa) ka — Gw = 0 (4)

For a cantilever beam, the four boundary conditions at

the two ends are given by
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and W = % =0 at xz=I. (5a,b)

3. Numerical results and discussion

A code is written in Matlab to solve Eq. (4) and
perform DQ method. Fifteen grid points are used
for convergence of the DQ approach [6]. At first, the
effect of surrounding elastic foundation is neglected, i.e.
Kg = 0. Figure 2 depicts the variations of 1st frequency
deviation percent of the rotating SWCNT in terms of

. . . AR?L*
the non-dimensional angular velocity v (y? = 2557,
for both local and nonlocal elastic models. Frequency

deviation percent is defined as:

Frequency deviation percent

100 x (frequency(local) — frequncy(nonlocal))

frequency (local)

From Fig. 2 it can be seen that for all values of the non-
local parameter, as the non-dimensional angular velocity
increases, the frequency deviation percent increases as
well. This phenomenon occurs in both local and nonlocal
elastic models. The increase of the frequency deviation
percent with angular velocity is attributed to the stiffen-
ing effect of the centrifugal force which is proportional to
the square of the angular velocity.

The effect of small-scale on the 2nd mode of the ro-
tating SWCNT is shown in Fig. 3. Unlike the 1st mode,
frequency deviation percent values of the local model are
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Fig. 2. Variations of 1st frequency deviation percent

versus non-dimensional angular velocity of rotating
SWCNT, Kg = 0.

more than that of the nonlocal models. It is also ob-
served that for a certain angular velocity, with increase
of the nonlocal coefficient, the frequency deviation per-
cent decreases.
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Fig. 3. Variations of 2nd frequency deviation percent
versus non-dimensional angular velocity of rotating
SWCNT, Kg = 0.
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Fig. 4. Variations of 1st frequency deviation percent of
SWCNT on elastic foundation versus non-dimensional
angular velocity, Kg = 2.

The variations of the fundamental frequency deviation
percent of SWCNT versus non-dimensional angular ve-
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Fig. 5. Asin Fig. 4, but for K¢ = 10.

locity for the Pasternak-type elastic medium for two stiff-
nesses K¢ = 2 and 10 are respectively shown in Figs. 4
and 5, respectively. From these figures it can be seen that
in both local and nonlocal cases, by increasing the angu-
lar velocity, fundamental frequency deviation percent in-
creases. Moreover, as the Pasternak coefficient increases,
the rate of the increase of the frequency deviation percent
decreases.

4. Conclusions

Nonlocal elasticity beam model is applied to study
the vibration response of rotational SWCNT. The DQ

method is utilized to solve equation of motion. It is ob-
served that for the first mode of vibration, the frequen-
cies obtained with nonlocal model are higher than those
computed with local model; but for the second mode it
is adverse. By increasing the angular velocity, the differ-
ence between the local and nonlocal frequencies increases.
For the Pasternak elastic medium, it is shown that fun-
damental frequency deviation percent increases for both
nonlocal and local cases and with the same angular ve-
locity, its values are less than those for the model without
elastic medium.
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