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is discussed. Analytical calculations are performed to �nd the governing equation for the evolution of the pulse
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predicted numerically.
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1. Introduction

The theoretical and experimental study of nonlinear
interactions of intense laser pulses with plasma is an ac-
tive topic of research. It has potential applications, such
as particle and photon acceleration [1, 2] and fast ignition
in inertial con�nement fusion [3]. Relativistic solitons are
electromagnetic structures, self-trapped by locally mod-
i�ed plasma refractive index, due to relativistic electron
mass increase, and the electron density redistribution by
the ponderomotive force of an intense laser pulse. These
solitons are generated behind the front of the laser pulse.
They are made of spatially localized low-frequency non-
linear electromagnetic (EM) �eld with a close to zero
group velocity. A fairly large part of the laser pulse en-
ergy can be transformed to solitons. Recently, the re-
search on solitons has received much attention because
they are of fundamental importance in nonlinear sciences
[4] and are considered to be essential components of tur-
bulence in plasma [5]. The mechanism of the electromag-
netic soliton formation and its structure were analytically
investigated and observed by particle simulation in the
interaction of intense laser radiation with under and over-
-dense plasmas [6].
It is well known that a laser pulse in vacuum will

di�ract over a distance of a Rayleigh length. In other
words, the characteristic distance for propagation of
a directed radiation beam in vacuum is the Rayleigh
range, ZR. In a medium the intensity-dependent, nonlin-
ear, dielectric properties modify this characteristic length
[7, 8]. This can extend the propagation distance com-
pared to that in free space. In a uniform plasma, a laser
pulse can guide itself by the e�ect of relativistic self-
-focusing and ponderomotive self channeling. However,
if the laser power is smaller than the critical power
Pc = 17(ω0/ωp)

2 GW where ω0 and ωp are the laser
and plasma frequencies, respectively [9�11], the di�rac-

∗corresponding author; e-mail: ehphys75@iaubushehr.ac.ir

tion would dominate over the forgoing e�ects and the
laser pulse will di�ract again. On the other hand, a pre-
formed plasma channel can prevent di�raction and allow
the propagation of the laser pulse through many Rayleigh
lengths without disruptions [12�15]. Plasma channels are
required to guide the laser light. It has been shown that
the beam spot size performs periodic oscillations along
the propagation distance in the presence of preformed
channel and has equilibrium solution (i.e., constant spot
size) when the laser power is equal to the matched powers
evaluated with di�erent nonlinear e�ects [16�18].
In this paper, we investigate on large amplitude rela-

tivistic electron-cyclotron waves produced by an intense
laser pulse propagating in a hot plasma channel with a
parabolic density pro�le. In Sect. 2, considering the ap-
propriate assumptions, we present the di�erential equa-
tion describing the evolution of the spot size. In Sect. 3,
by analyzing the governing equation, we discuss and pre-
dict the existence of electromagnetic solitary waves. Re-
sults of the numerical solutions are also presented in
Sect. 3. Finally in Sect. 4, we summarize the �ndings
of the paper.

2. Evolution equations

We assume a circularly polarized laser pulse propagat-
ing along the z-direction in a hot plasma channel which
has a parabolic density pro�le. We can write the wave
equation as [9]:(

∇2 − 1

c2
∂2

∂t2

)
a

= k2p

(
1 +

r2

r2ch
− |a|

2

2
+∇2

⊥
|a|2

2

)
a, (1)

where kp = ωp/c is the plasma wave number. The
second, third and fourth terms on the right hand side
of Eq. (1) are due to preformed channeling focus, self-
-focusing and ponderomotive self-channeling, respec-
tively. Now, assuming that Eq. (1) has a solution with
the Gaussian transverse pro�le [19�22]:
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a(r, t) = ar(z)e
−r2/r2s(z) e|b(z)r

2+φ(z)| (2)

and employing the variational method [9, 19], we obtain

∂

∂z
(arrs) = 0, (3)

k0
∂rs
∂z

= 2brs, (4)

k0
∂b

∂z
=

2

r4s
− 2b2 −
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− a2r
r4s
−
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2
r

8r2s
, (5)

k0
∂φ

∂z
= − 2

r2s
+
a2r
r2s

+
3k2pa

2
r

16
. (6)

From Eqs. (3)�(6) we can obtain the propagation charac-
teristics of the laser pulse in the plasma channel. Com-
bining Eqs. (4) and (6), the normalized equation describ-
ing the evolution of the spot size is given as

∂2rs
∂z2

=
1− p
r3s
−Ncrs −

a20
2r5s

. (7)

Now, for the sake of simplicity, a collimated incident laser
pulse is considered. With the initial condition rs = 1 at
z = 0, integrating Eq. (7) once gives

1

2

(
∂rs
∂z

)2

+ V (rs) = 0, (8)

where

V (rs) =
1

2
γ(1− p)Λ [rs(β − v)]−2 (1− βv)

+
1

2
γ2v2Ncr

2
sΛ

3 [(β − v)]−2 − 1

8
Λ2a20r

−4
s − V0, (9)

in which

V0 =
1

2
γ(1− p)Λ 1− βv

(β − v)2
+

1

2

γ2v2NcΛ
3

(β − v)2
− Λ2a20

8
(10)

and

Λ =
e2

m2
ec

2(ω − ωce)
, ωce =

eB0

me
p = k2pa

2
0r

2
0/16

is the normalized laser power by the critical power pc =
16π for self-focusing in plasma and Nc = k2pr

4
0/4r

2
ch is

a parameter relating to the e�ect of preformed channel
focusing. Also, β = u

c and v = V
c in which u and V are

�uid and solitary wave velocities, respectively.

3. Existence of solitary waves

Now we turn our attention to investigate the existence
of solitary wave solutions of Eq. (8). We follow the same
technique used in [22]. The roots of V (rs) = 0 can be
easily found using the solutions of a cubic equation. The
roots, in terms of the coe�cient can be expressed as

rs1 = 1, (11)

rs2 =
[(
Np +

√
N2

p − 16Nca20

)
/8Nc

]1/2
, (12)

rs3 =
[(
Np −

√
N2

p − 16Nca20

)
/8Nc

]1/2
, (13)

where

Np = 4(1− p)Λ− a20. (14)

Real and positive roots are acceptable. Di�erent cases

can be considered as:
(a) if p > 1−Λ2a20

√
Nc −Λa20/4, the equation has one

real (i.e. rs1 = 1) and two non real complex conjugate
roots;
(b) if p < 1 − Λ2(Nc − a20/2), V (rs) = 0 has three

distinct real roots rs3 < rs1 = 1 < rs2;
(c) if 1−Λ2(Nc − a20/2) < p < 1−Λ2a20

√
Nc −Λa20/4,

three cases can be considered:
(c1) if Nc = N∗c , where the critical channel parameter

N∗c = γ20a
2
0/4, V (rs) = 0 has triple root, i.e., rs1 = rs2 =

rs3 = 1;
(c2) if Nc > N∗c , three types can be discussed as fol-

lows:
(c2.1) if p = 1 − Λ2a20

√
Nc − Λa20/4, V (rs) = 0 has

three real roots: rs1 = 1 and twofold root rs2 = rs3 =√
a0/2
√
Nc < 1;

(c2.2) if 1−Λ2
0(Nc−a20/2) < p < 1−Λ2a20

√
Nc−Λa20/4,

V (rs) = 0 has three unequal real roots: rs3 < rs2 <
rs1 = 1;
(c2.3) if p = 1 − γ20(Nc − a20/2), then V (rs) = 0 has

three real roots: twofold root rs1 = rs2 = 1 and rs3 < 1;
(c3) if Nc < N∗c , the following results are given:
(c.3.1) if p = 1 − Λ2a20

√
Nc − Λa20/4, V (rs) = 0 has

three real roots: rs1 = 1 and

rs2 = rs3 =

√
a0/2

√
Nc > 1;

(c3.2) if 1−Λ2
0(Nc−a20/2) < p < 1−Λ2a20

√
Nc−Λa20/4,

V (rs) = 0 has three unequal real roots: rs1 = 1 < rs3 <
rs2;
(c3.3) if p = 1 − γ20(Nc − a20/2), V (rs) = 0 has three

real roots: twofold root rs1 = rs3 = 1 and rs2 > 1.
Figures 1�9 show the variations of the potential V for

various values of p and Nc corresponding to the cases
(a)�(c3.3) respectively. In all cases, �x parameters, v =
0.3, β = 0.6 (γ = 1.25) and a0 = 0.3 (Nc = 0.04) are
considered.

Fig. 1. Potential V (rs) as a function of spot size rs for
Nc = 0.5, p = 0.97. rs = 1 is an unstable position and
the particle will move to the position rs → 0.

As is clear from Figs. 1, 3, 7, 8, rs = 1 is an unstable
position and the particle will move to the position rs → 0
for the certain parameters introduced in these cases. In
fact, these cases correspond to the catastrophic focusing.
In Fig. 6, the position rs = 1 is stable and the particle
will be at rest in this case. In fact, this case could be
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Fig. 2. Potential V (rs) as a function of spot size rs
for Nc = 0.5, p = 0.2. Particle will move periodically
between rs1 and rs2.

Fig. 3. Potential V (rs) as a function of spot size rs for
Nc = 0.04, p = 1.04. rs = 1 is an unstable position and
the particle will move to the position rs → 0.

Fig. 4. Potential V (rs) as a function of spot size rs for
Nc = 0.5, p = 0.796. Particle is in critical state.

Fig. 5. Potential V (rs) as a function of spot size rs
for Nc = 0.5, p = 0.65. Particle will move periodically
between rs1 and rs2.

Fig. 6. Potential V (rs) as a function of spot size rs for
Nc = 0.5, p = 0.34375. Position rs = 1 is stable and
the particle will be at rest.

Fig. 7. Potential V (rs) as a function of spot size rs for
Nc = 0.02, p = 0.9092. rs = 1 is an unstable position
and the particle will move to the position rs → 0.

Fig. 8. Potential V (rs) as a function of spot size rs for
Nc = 0.02, p = 0.998. rs = 1 is an unstable position
and the particle will move to the position rs → 0.

Fig. 9. Potential V (rs) as a function of spot size rs for
Nc = 0.02, p = 1.09375. Particle is in critical state.
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related to a constant spot size. In Figs. 2 and 5, particle
will move periodically between rs1 and rs2 which shows
the characteristic feature of periodic solutions. Finally,
Figs. 4 and 9 indicated that the particle is in critical
state.

4. Summary

Using the appropriate equations, we presented the gov-
erning equation of the laser spot size. By analyzing the
di�erential equation, we discussed and obtained the so-
lutions of the potential function. Also, we presented the
potential evolutions with the spot size.
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