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The proposed work will be consecrated to the study of positive pre-breakdown currents triggered in mineral
transformer oil under 50 Hz alternating overvoltage. Since negative currents are recorded in low rates and for higher
voltage levels than positive ones, only the latter will be prior taken into consideration. Both streamer propagation
and arc discharge current types are identi�ed and are used in the training process of an arti�cial neural network and
the multi-linear regression line of these currents in order to develop a complementary diagnosis tool that can serve
as an on-line transformer protection. More successful results than those obtained by other developed techniques
are expected.
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1. Introduction

Power transformers are mineral insulating oil �lled,
which serves for both cooling and insulating of their dif-
ferent active parts. Most of their failures are due to elec-
trical discharges occurrence and overheating. The phys-
ical nature of the discharges must be well identi�ed as a
function of their energy in order to take a suitable action
to protect this equipment.
Indeed, electrical arcing discharges in liquid dielectrics

are generally preceded by streamer generation and prop-
agation through the electrode gap. Their propagation
velocity and corresponding current are greater than the
streamers ones, and depend mainly on the nature of the
liquid and the applied electric �eld [1]. Furthermore, the
transition of a streamer to an arcing discharge obeys a
statistical law [2].
The pre-breakdown and breakdown phenomena in liq-

uid dielectrics have been the subject of numerous stud-
ies mainly consecrated to the shape and velocity of the
streamers as well as to the electric, optic, and acoustic
parameters that characterize them. Currents, correlated
emitted lights, and acoustic echoes are privileged param-
eters for sensor inventors that can serve as elements of
supervision and decision for the protection of the equip-
ments in which these oils are used.
Several techniques of measurement and diagnosis have

been then proposed for power transformer monitoring.
Most of them are plainly performed out of service. They
sometimes come very tardily, especially when the pro-
cess of deterioration is already accelerated. For that pur-
pose, new surveillance live techniques have been devel-
oped [3�5] as complementary to the classical methods
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[6�8]. They are based on numerical techniques leading
to more satisfactory results.
Since positive streamers are initiated earlier than the

negative ones [2], this work will be focused on positive
streamers occurrence and their probability to lead to arc
discharges. An arti�cial neural network (ANN) will be
developed in the purpose of surveillance and protection of
power transformers against such discharges succeeding to
positive streamers propagation under alternating voltage.
This will enable to consider the transformers protection
at the ultimate instant against internal discharges of high
energy level.

2. Experimental technique

The experimental device is constituted by a HV trans-
former (220 V/50 kV, 50 Hz) and a test cell made of
Pyrex of 500 ml volume, containing a point-plane elec-
trode system. The plane electrode is a brass circular disc
of 40 mm diameter, covered with an insulating sheet of
plexiglas in order to avoid eventual damages to the mea-
suring apparatus. The point electrode is a tungsten type
whose radius curvature is 10 µm. The electrode gap d is
varied between 2.0 and 18.5 mm.

3. Current measurement

The streamer current is measured through a non-
-inductive resistance Rm of 50 Ω placed between the
plane electrode and the earth, and connected to the
50 Ω input of a memory digital oscilloscope (Lecroy 9450,
bandwidth 350 MHz). The oscilloscope input is protected
by two fast diodes (AN4148, 100 mA, 4 ns, 100 V) placed
in head to head.
The trigger level of the oscilloscope is chosen the lowest

possible in order to record the lowest energy streamers
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while avoiding inopportune triggering of the oscilloscope
owed to partial discharge currents through the external
walls of the test cell. This level is as more elevated than
the electrode gap and the applied voltage is increased [2].

4. Current shapes

According to the amplitude of the applied voltage, dif-
ferent shapes of current can be observed [9]. They ap-
pear under the two alternations (positive and negative)
when the voltage overtakes a certain threshold value cor-
responding to the streamers initiation. The positive ones
apparition is however more frequent than the negative
ones. Figure 1 shows the di�erent shapes of current, ob-
served in mineral oil under di�erent voltages for the same
geometry of electrodes.

Fig. 1. Di�erent types of recorded currents for applied
voltage U = 27 kV, gap d = 12.5 mm, point radius
curvature rp = 10 µm. A1, A2 and A3: positive cur-
rents not followed by arc discharges. B: positive followed
by an arc discharge. C: negatives not followed by arc
discharge. Scale: time: 2 µs/div; currents: A1, A2,
and A3: 5 mA/div; B: 10 mA/div and C: 1.5 mA/div.

Currents of type A1 are mainly recorded at the low-
est voltage levels. They correspond to positive stream-
ers propagation extinguishing before reaching the oppo-
site electrode. Those of type A2 and A3 are the most
frequently recorded at greater voltage levels. They are
characterized by a continuous component that increases
with time until a maximal value corresponding to the

streamer arrival on the plane electrode [10, 11]. Current
pulses whose amplitude decreases with the applied volt-
age are superimposed on this continuous component. It
is the type of current the most recorded [2].
Signals of type B are associated to positive streamers

propagation followed by a breakdown of the whole insu-
lation system. The breakdown can occur before or after
reaching the maximal value of the current corresponding
to the arrival of the streamer on the opposite electrode.
This type of current is the most dangerous and should
correspond to very fast events such as those observed by
Torshin [12] and Lundgaard et al. [13]. The protection
devices must identify them and grant them a particular
interest.
Currents of type C, recorded at further more elevated

voltage levels than the previous ones, correspond to neg-
ative streamers propagation, which are slower and of
weaker energy than the positive ones, and that extin-
guish frequently before reaching the opposite electrode.
This type of streamer does not represent a signi�cant
immediate danger for the insulation system.

5. Signals characterization

The characterization of these types of signals is com-
plex and di�cult to perform. It requires the use of pre-
dictive models based on statistics and probabilities. The
use of neural networks is better indicated for solving this
type of problem which consists on electrical signals clas-
si�cation.

5.1. Choice of the ANN architecture

The choice of an ANN adequate architecture is pri-
mordial in order to obtain an e�ective system or at least
functional.
Usually, only one hidden layer is su�cient to solve most

problems. In general, more an ANN has inputs and more
the solving of the problem is complex, more it will be
necessary to add neurons in the hidden layer [14].
Moreover, concerning the choice between a forward and

back propagation topology, and interconnections between
neurons, the problem to solve has to be well known. For
instance, a recursive structure is often better adapted for
the recognition and classi�cation of signals or pictures.
It is also very e�ective when the temporal aspect of the
applied signals in the input is important.
However, the topology of forward propagation net-

works remains the most used because of the simplicity
of the used training algorithms and for its reputation to
produce performing solutions to several concrete prob-
lems of the industry.
When the ANN must provide a response in real time,

or furthermore, when it must be adapted to changes of its
environment while pursuing its training in real time, the
structure of the network must be then simpli�ed at the
maximum in order to decrease the number of required
mathematical operations and to limit the necessary ma-
terial resources to the implementation of the ANN.
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6. Methodology

6.1. Neural network inputs

In the present work, the neural model inputs will be de-
termined from results obtained by the robust multi-linear
regression line. For better results, input parameters must
be most representative of the signals to identify.

6.2. Input vector creation

The digital signal (well sampled signal) representing
the input vector passes by the following processing units:
Indentation of the signal: This unit enables to divide

the signal of length X in windows (segments) of data.
One uses this technique to be able to introduce the signal
segments one after the other by following the chronologi-
cal order (simulation in real time). The Matlab command
used in this unit is: bu�er (signal of length X, size of the
window). In order to avoid an excessive or slow indenta-
tion of the signal, only the critical zone corresponding to
the rising zone of current is considered. All signals are
divided into windows of equal size which are in their turn
divided into sub-windows (Fig. 2). The Matlab command
used in this unit is: bu�er (window, size window/5).
Regression line: The regression line is represented by

the equation: y = A + Bx. It is de�ned by the parame-
ters A and B that are determined by applying the least
squares method

A = cov(x, y)/V (x), (1)

A =

(∑
xy

n
− x̄ȳ

)/(∑x2

n
− x̄2

)
, (2)

B = ȳ −Ax̄, (3)

where n is the number of observations.
Indeed, it consists in �nding values of these two pa-

rameters that minimize the sum of the square of the de-
viations between the di�erent points and the line itself.

Fig. 2. Signal type and windows choice.

In this calculation unit, we will determine the equation
(y = A+Bx) of the robust multi-linear regression line of
a window, where B represents the slope. This parameter
represents the neural network principal input.
The advantage of the multilinear regression line is that

it passes by the maximum of points with regard to the
linear regression line. The Matlab command used in this
unit is: robust�t (size of the window, window).

6.3. Neural network output

The output will be under binary form (1 or 0) for every
window. A great neurons number increases the time of
calculation exaggeratedly, but yields better results gener-
ally. Currently, there does not exist any method to �nd
the optimal con�guration. Several networks have been
therefore tried and the better is kept. The retained con-
�guration is a multilayer network with two hidden layers.

7. Testing procedure

The database contains signals of di�erent current cat-
egories. A �rst ordering will be done at the creation of
this database. Every signal portion will be classi�ed ac-
cording to its type (dangerous or not dangerous).
The database thus constituted will serve for the train-

ing phase of the neural network. Di�erent types of
training will be used, and the retained training will be
the�trainlm�. The best con�guration of the ANN will
be chosen according to its performances, from the table
issued from the training phase.
The following phase consists in introducing discharge

signals as inputs and to observe the behavior of the
network.

8. Testing and results

Figures 3 and 4 are obtained from the test of the net-
work. The blue color represents the original signal, and
the red color � the result of the test. The latter evolves
with the original signal until the network identi�es it as
being a dangerous signal. Then the circuit breaking can
be triggered. Otherwise, it continues its evolution with-
out any action order.

Fig. 3. Results of the test: current signal identi�ed as
leading to breakdown and instructions of breaking be-
fore arcing phase arriving. Scale: current: 2.5 mA/div,
time: 300 calculation points/µs.

The two signals are superimposed until the computed
signal (red color) will be set to zero. This means that a
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Fig. 4. Results of the test: recorded current signal
and stored without breaking instruction as a function
of the number of calculation points. Scale: current:
2.5 mA/div, time: 300 calculation points/µs.

dangerous window is detected and can be succeeded by
an arc discharge event. This result is conclusive since the
zero setting is instantaneously executed before the high
energy arcing occurs. This can enable to prevent eventual
equipment deterioration and circuit breaker acting with
relatively high initial currents that can provoke a failure
of breaking.
The red color signal (Fig. 4) superimposes perfectly

with the signal of origin (blue color), which means that
this signal is not immediately dangerous and will be clas-
si�ed as of second level. This type of signal does not
present any potential risk to be followed by an arc dis-
charge.

9. Conclusion

Power transformer oil current discharges present di�er-
ent characteristics as a function of the energy and the cu-
mulated number of the discharges. They consist mainly
in their continuous component shape, their amplitude,
and the frequencies of the pulses that are superimposed
to them. They depend on the physico-chemical prop-
erties of the oil related to their molecular structure and
other new molecules and dissolved gases generated by the
discharges.

Real time analysis of pre-discharge signals (default cur-
rents or corresponding emitted lights) represents a fast
and reliable solution for transformers diagnosis monitor-
ing and protection. The default current discrimination
approach based on arti�cial neural networks coupled with
regression line slope analysis proved out to be a real time
and robust solution for solving this type of maintenance
problem which depends on several parameters, and sat-
isfactory results have been obtained.
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