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We studied one-dimensional electron transport in a system composed of two monolayer graphene sheets with
an optional arrangement of di�erent constant rectangular electrostatic potential barriers between them. We derived
a generalized transfer matrix for the electron which passes through this system. Finally, we examined our model
by applying it on a well known rectangular shape constant potential barrier and we obtained the same result from
our method similar to the others.
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1. Introduction

Graphene is a two-dimensional (2D) monolayer of car-
bon atoms that forms a planar hexagonal lattice which
can be assumed as a one-atom thick sheet of carbon
atoms, pulled out of graphite bulk by micro mechanical
cleavage. Graphene was �rst produced by Geim's group
in Manchester University in 2004 [1].
Because of its monolayer honeycomb lattice, electrons

in graphene behave like massless Dirac fermions [2] and
obey two-dimensional Dirac-like equation [3, 4]. This is
responsible for most unusual properties of graphene, for
instance, emersion of the Shubnikov�de Haas (SdH) os-
cillations in graphene, by applying a time varying elec-
tric �eld instead of usual magnetic one [5]. An electro-
statically created n�p junction in monolayer graphene
perfectly transmits those quasiparticles that approach it
perpendicularly [6]. Due to the chiral nature of mass-
less Dirac fermions in graphene, some relativistic exper-
iments, like the Klein paradox [7] has been studied in
condensed-matter by using an electrostatic barrier on a
single layer graphene, theoretically [8] and experimen-
tally [9]. In addition a remarkable property of graphene
will be in heterostructures, for example a planar het-
erostructure composed of two graphene sheets and a
narrow-gap semiconductor ribbon between them, can be
applied as a gate [10].
In this letter we will �nd out a generalized transfer

matrix for the electron transport through two monolayer
graphene sheets with an optional arrangement of dif-
ferent constant rectangular electrostatic potential bar-
riers between them. Electron behaves like massless
Dirac fermions in graphene regions and it can be mas-
sive or massless in potential region (region between the
graphenes). If the electron behaves like massless Dirac
particles in each place, transmission probability will be
unity in one-dimensional motion [8]. Here we are going to
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calculate the transfer matrix of the system when electron
is massive in the potential region. Obtaining the transfer
matrix will let us to use it for calculating the transmis-
sion probability. Finally, we will examine our model by
applying it on a well known system, when the potential
region is a constant rectangular electrostatic potential
barrier, on a single layer graphene.
The paper is organized as follows. In Sect. 2 we present

the plane wave solutions of massless and massive Dirac
equations. In Sect. 3 we will derive the transfer matrix
and �nally will use it in Sect. 4.

2. Electron in di�erent regions

In the hexagonal reciprocal lattice of graphene there
are two non-equivalent pointsK, K ′, the so called Dirac
points, at the corners of the �rst Brillouin zone [11, 12].
Around each of the Dirac points, low energy electrons
and holes have linear dispersion

E(K) = ±~vF|K|, (1)

with two-dimensional wave vector K and the Fermi ve-
locity vF ≈ 106 m/s [11, 12]. Thus the conduction (elec-
trons) and valence (holes) conical bands touch at the
points K, K ′ (E(K) = 0) producing two nonequivalent
valleys. This makes graphene a gapless semiconductor
with relativistic-like dispersion of the excitations [13].
An electron in graphene lattice is described by a four-

-component spinor (ψ+
A , ψ

−
B , ψ

+
A , ψ

−
B) in which, ψ+

A(B) is

referred to the amplitude of the electron wave function
on sublattice A (B) of the hexagonal structure with wave
vector centered around the valley K and ψ−A(B) is the

corresponding wave function around the valley K ′ [13].
When we assume the graphene in x�y plane, this four-

-component spinor satis�es the Dirac equation of the
form [13]:

− ivF

(
H+ 0

0 H−

)
ψ = Eψ, (2)

H± = σx∂x ± σy∂y, (3)

where σx and σy are the Pauli matrices describing pseudo

(148)
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spin space of two sublattices A and B (hereafter ~ = 1).
Electrons in graphene obey two-dimensional massless
Dirac like Hamiltonian around the points K and K ′ as

H = vFσ ·K, (4)

for K points and

H = vFσ ·K ′ (5)

for K ′, where K = (kx, ky), K
′ = (kx,−ky), kx,y =

− i∂x,y and σ = (σx, σy).

Since every permutation of the Pauli matrices in two-
-dimensional Dirac equation is allowed [14], we can
choose the σ matrices in Eqs. (4), (5) as σ = (σz, σy)
and assume the graphene sheet in the z�y plane. Now
we have K = (kz, ky), K

′ = (kz,−ky) and kz,y = − i∂z,y
and Hamiltonian of graphene will be in the form below

H = vF

(
σ ·K 0

0 σ ·K ′

)
. (6)

Performing two unitary transformations U1 =

(
I 0

0 σy

)

and U2 = 1√
2

(
I I

I −I

)
(I is 2× 2 unit matrix) sequen-

tially to graphene's Hamiltonian [15], will lead us to ob-
tain the Dirac-like Hamiltonian as

HD = vFαK, (7)

where α =

(
0 σ

σ 0

)
are the α Dirac matrices.

Now we have a two-dimensional massless Dirac equa-
tion in z�y plane. For energy E (E > 0) and helicity λ,
the wave equation along di�erent directions of the z axis
will be [16]:

ψ±(Z) =
1√
2

(
ξ(λ)

±λξ(λ)

)
e− iEt± iK · Z , (8)

where K is the momentum, ξ(λ) is the normalized Pauli
spinor of the helicity basis, ψ+(Z) is the wave equation
along positive direction of the axis and ψ−(Z) is the wave
equation along negative one.

So far we calculated the wave equations in graphene
regions, now we are going to �nd the wave equations in
potential region. We will assume the potential region in a
space domain D, and apply an external electromagnetic
�eld on this domain for creation of the potential barrier.
The Dirac equation for the motion of an electron with
charge −e and the mass m, in an external electromag-
netic �eld Aµ is

γµ(i∂µ − eAµ)ψ −mψ = 0. (9)

And here we choosed the γ-matrices in standard
form [17]. By arranging the A(x) = 0 and eA0(x) =
V = const for any x ∈ D the Dirac equation can be
analytically solved. So with momentum K, E(K) =√
m2 +K2 + V and helicity λ in the standard normal-

ization we have [17, 18]:

ψE,λ(X) =
1√
2m

( √
E(K)− V +mξ(λ)

λ
√
E(K)− V −mξ(λ)

)
× e− iEt+iKX . (10)

This is a general solution for Eq. (9) with positive energy
E and it is held only for E ≥ V + m. To obtain one-
-dimensional solution, we can orient the momentum K
along to a �xed direction, in this case we will orient it
along the z axis.

We assumed that sigma matrices in (3)�(7) represent
pseudospin (due to sublattices A and B in graphene) in
Dirac-like equation for graphene regions and sigma matri-
ces in (9) represent the real spin of electron in narrow-gap
semiconductor region. Pseudo spin is not related to the
real physical spin and sigma matrices in graphene and
potential regions provide the spinor shape of wave func-
tions. This di�erence is not going to a�ect our calcula-
tions, because in narrow-gap semiconductor Hamiltonian
(9) we are not considering the e�ect of real spin (we are
looking for electrostatic barriers e�ect only).

Since the spin is projected on the z axis, the helicity ba-
sis spinors are equal to spins basis one. It means that two-
-component spinor ξ(λ) is in the form of ξ(1) = (1, 0)T

and ξ(−1) = (0, 1)T. Now we will set an arbitrary ar-
rangement of rectangular constant potentials between
two sheets of graphene. We can assume N rectangu-
lar constant potential barriers whereas each of them has
optional width and height as illustrated in Fig. 1.

Fig. 1. Arbitrary arrangement of constant rectangular
barriers.

These potentials will be in speci�ed intervals denoted
by Di = [zi, zi+1] and each interval has a speci�ed con-
stant experimental potential, Vi. Two graphene sheets
will be in two intervals Din ≡ D0 = (−∞, z1] and
Dout ≡ DN+1 = [zN ,∞), and there is no potential in
these regions, V0 = VN+1 = 0. Here we will assume that
electron in each interval Di has an e�ective mass mi and
relativistic potential V̂i = Vi+ δmi instead of experimen-
tal one, where δmi = m−mi [19]. In each interval there
is a plane wave solution with energy E and helicity λ
along the positive direction of the z axis. From Eq. (10)
we have
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φiE,λ(t, z) =
1√
2

(
k
(+)
i ξ(λ)

λk
(−)
i ξ(λ)

)
e− iEt+ikiz, (11)

where for graphene regions k±0 = k±N+1 = 1 and for the

potential region k
(±)
i =

√
E−V̂i±mi

mi
. The scalar mo-

mentum for graphene regions is K0 = KN+1 = E
vF

and for the rest of the system the momentum is Ki =√
(E − V̂i)2 −m2

i .

We have plane wave solutions with the same E and
helicity λ but propagating in another direction of the z
axis as

χiE,λ(t, z) =
1√
2

(
k
(+)
i ξ(λ)

−λk(−)i ξ(λ)

)
e− iEt− iKiz, (12)

where k±i and Ki in this equation are the same as the
parameters used in Eq. (11). The general plane wave
solutions with energy E and helicity λ in each domain
Di is a linear combination of φi and χi, which is

Ψ i
E,λ(t, z) = Aiφ

i
E,λ(t, z) +Biχ

i
E,λ(t, z). (13)

Here Ai and Bi are arbitrary complex numbers.

3. Transfer matrix

Now we are going to �nd the transfer matrix of electron
transport through the de�ned system. Energy satis�es
the condition E ≥ V +m in entire of the system and all
of the solutions (11, 12) have the identical �xed energy
E and helicity λ in each interval. When the number of
intervals (N) is large, we can use the associated two-
-dimensional vectors, instead of Eq. (13) [20]:

vi(z) =

(
Ai e

iKiz

Bi e
− iKiz

)
. (14)

These vectors represent incoming and outgoing wave
functions in each interval. Thus the vectors (14) become
the basic elements of the transfer matrix for rectangular
barrier, and all we have to do is to �nd the transfer ma-
trix M which relates the initial and �nal vectors as

v0(z1) =MvN+1(zN+1). (15)

The wave Eq. (13) is continuous in each point zi, and
from boundary condition we have

Ψ i−1
E,λ (t, zi) = Ψ i

E,λ(t, zi) (16)

and i = 1, 2, . . . , N + 1. By applying some calculation
we can reach to a simple relation among the associated
vectors

vi−1(zi) =Mivi(zi), (17)

where Mi matrices are

Mi =
1

2

(
r+i + r−i r+i − r

−
i

r+i − r
−
i r+i + r−i

)
(18)

and

r+i =
k
(+)
i

k
(+)
i−1

, r−i =
k
(−)
i

k
(−)
i−1

. (19)

At last we have the translation matrices as

Ti =

(
e− iKi(zi+1−zi) 0

0 e iKi(zi+1−zi)

)
, (20)

that transforms vi(zi+1) into vi(zi) = Tivi(zi+1). Now
we can introduce the general formula for the transfer ma-
trix as

M =

[
N∏
i=1

MiTi

]
MN+1. (21)

This matrix relates the initial and �nal vectors through
an arbitrary set of constant rectangular potential
barriers.

4. Constant potential

In this section we will examine our model by applying
it on the system, in which we have a rectangular shape
potential barrier in�nite along the y-axis on a monolayer
graphene, as the potential region

V (z) =

{
V, 0 < z < d,

0 otherwise.
(22)

The general scheme of this system is shown in Fig. 2.

Fig. 2. A constant rectangular potential barrier be-
tween two graphene sheets.

Here electron obeys the massless Dirac-like equation,
entire of the system. From Eq. (8) we have the wave
function for electron in graphene regions with zero and
nonzero potential, in both directions of the z axis. In this
case we have k±0 = k±N+1 = k±i = 1 and the momentum

in the potential region isKi =
E−V
vF

. We can assume the
number of rectangular barriers as N = 1, because the po-
tential value does not change in the interval 0 < z < d.
After calculating r±i the Mi matrix will be

M1 =

(
1 0

0 1

)
. (23)

For the transmission matrix we have

T1 =

(
e
− i E−V

vF
d

0

0 e
i E−V

vF
d

)
(24)

and MN+1=2 is

M2 =

(
1 0

0 1

)
. (25)

Finally the transfer matrix from Eq. (24) will be

M =

(
e
− i E−V

vF
d

0

0 e
i E−V

vF
d

)
. (26)

The transmission coe�cient is
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T =
|AN+1=2|2

|A0|2
= |M11|−2. (27)

Obviously it is equal to unity (T = 1), and it is in corre-
spondence with Ref. [8].

5. Conclusions

In this paper, we have studied the one-dimensional
electron transport through a system consisting of an ar-
bitrary set of constant rectangular electrostatic potential
barriers, between two graphene sheets. We introduced a
generalized transfer matrix for this system where the elec-
tron in potential region behaves like a massive particle.
Finally, we tested our model by calculating the electron
transmission probability for a rectangular constant elec-
trostatic potential barrier on a single layer graphene and
its result was the same as the others.
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