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Electron Dynamics in Crystalline Semiconductors
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Electron dynamics in crystalline semiconductors is described by distinguishing between an instantaneous veloc-
ity related to electron's momentum and an average velocity related to its quasi-momentum in a periodic potential.
It is shown that the electron velocity used in the theory of electron transport and free-carrier optics is the average
electron velocity, not the instantaneous velocity. An e�ective mass of charge carriers in solids is considered and it
is demonstrated that, in contrast to the �acceleration� mass introduced in textbooks, it is a �velocity� mass relating
carrier velocity to its quasi-momentum that is a much more useful physical quantity. Among other advantages, the
velocity mass is a scalar for spherical but nonparabolic energy bands ε(k), whereas the acceleration mass is not
a scalar. Important applications of the velocity mass are indicated. A two-band k · p̂ model is introduced as the
simplest example of a band structure that still keeps track of the periodic lattice potential. It is remarked that
the two-band model, adequately describing narrow-gap semiconductors (including zero-gap graphene), strongly
resembles the special theory of relativity. Instructive examples of the �semi-relativistic� analogy are given. The
presentation has both scienti�c and pedagogical aspects.
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1. Introduction

The phenomenon of Zitterbewegung (ZB, trembling
motion), devised in 1930 by Schrödinger [1], has been
for the last 80 years a subject of controversy and ex-
citement. The interest in this phenomenon experienced
a strong revival in 2005, when it was demonstrated that
the trembling motion can occur also in solids [2, 3]. Since
then there has been a real surge of papers proposing ZB in
various periodic systems, as reviewed in [4]. The nature
of ZB in solids was investigated and it was shown that, in
its �classical� form analogous to ZB in a vacuum [1], the
trembling motion represents oscillations of velocity when
an electron moves in a periodic potential of the lattice [5].
The situation resembles a roller-coaster: when the train
moves upwards gaining the potential energy, it slows
down; when the train goes down losing the potential en-
ergy, it accelerates. However, in the solid state literature
the largely prevailing picture is based on the Bloch theo-
rem in which electrons are treated as quasi-free particles
with a modi�ed (e�ective) mass. This picture suggests
that the electrons move in a solid with a constant veloc-
ity. The same approach is used in the transport theory,
in which carrier velocity is assumed constant and equal to
v = ~k/m∗, where k is the wave vector and m∗ is the ef-
fective mass. To the author's knowledge, there exist only
two textbooks discussing an instantaneous carrier veloc-
ity in a crystal: Wave Mechanics of Crystalline Solids by
Smith [6] and Semiconductor Physics by Kireev [7].
The problem arises: how to reconcile the two pictures?

This is the �rst purpose of our work. We show that the
above question is related to the di�erence between car-
rier's momentum and quasi-momentum in a periodic po-
tential. Our second purpose is to introduce properly an
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e�ective mass of carriers. In solid state textbooks the
e�ective mass is always de�ned as a quantity relating an
external force to carrier's acceleration. We show that
it is by far more useful to de�ne the e�ective mass as a
quantity relating the average carrier velocity to the quasi-
-momentum ~k. The �velocity mass� is a scalar for spher-
ical nonparabolic energy bands ε(k), whereas the �accel-
eration mass� is not. Important applications of the veloc-
ity mass are indicated. In addition, we brie�y describe a
�semi-relativistic� behavior of charge carriers in narrow-
-gap semiconductors including monolayer graphene. This
feature was discussed in the past but gained new signi�-
cance with �the rise of graphene� [8] and the advancement
of Zitterbewegung. To ensure the completeness and con-
tinuity of presentation, we include in our exposition a few
elements which are already known from the literature.
As it stands, the text has both scienti�c and pedagogical
aspects.

2. Electrons in a periodic potential
We begin by general considerations concerned with the

motion of charge carriers in crystalline solids. The Hamil-
tonian for an electron in a periodic potential V (r) is

Ĥ =
p̂2

2m0
+ V (r), (1)

where m0 is the free electron mass. The periodicity sig-
ni�es V (r) = V (r + a) for a being a lattice vector. The
velocity operator is given by the Hamilton equation

v̂i =
∂Ĥ

∂p̂i
=

p̂i
m0

. (2)

The same result is obtained from the relation v̂i =
dx̂i/dt = (1/ i~)[x̂i, Ĥ]. The acceleration operator is

âi =
dv̂i
dt

=
1

i~m0

[
p̂i, Ĥ

]
= − 1

m0

∂V

∂x̂i
=

1

m0
F pr
i , (3)

where F pr
i = −∂V/∂x̂i is a periodic force acting on the

electron moving in a periodic potential. Equation (3) is
equivalent to the second Newton law of motion in an op-

(132)
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erator form. It follows from Eq. (3) that the momentum
operator does not commute with the Hamiltonian (1), so
it is not a constant of the motion. In consequence, the
velocity of Eq. (2) and the acceleration of Eq. (3) are
also not constants of the motion. It is intuitively clear
that, since the potential and the resulting force in Eq. (3)
are periodic in r, the acceleration and the velocity will
also be periodic functions of r. This result has an el-
ementary classical interpretation. Classically, the total
electron energy is ε = mv2/2 + V (r), so if the potential
energy oscillates, the kinetic energy (i.e., the velocity)
also oscillates to keep the total energy constant. This
is, in fact, the physical origin of the trembling motion of
electrons in crystalline solids, see Ref. [5]. The results
given in Eqs. (2) and (3) apply to any Hamiltonian with
a scalar potential. The speci�city of a crystalline solid
is that the potential is periodic, so the Bloch theorem
applies. Thus

Ĥψnk(r) = εn(k)ψnk(r), (4)
where εn(k) is the energy of the n-th band depending
on the wave vector k. The Bloch state is ψnk(r) =
exp(ik·r)unk(r) in which the Bloch amplitude has the
same periodicity as the potential in Eq. (1), i.e. unk(r) =
unk(r + a). The quantity ~k is an eigenvalue of the
quasi-momentum operator P̂ , which should be carefully
distinguished from the standard momentum operator p̂
introduced in Eq. (1). The Hamiltonian (1) is invariant
with respect to transformations possessing the symmetry
of the potential and there should exist a constant of the
motion corresponding to this invariance. This constant
of the motion is precisely ~k. It means that the Bloch
state ψnk(r) should also be an eigenstate of the quasi-
-momentum P̂ , i.e. there should be by de�nition
P̂ψnk(r) = ~kψnk(r). (5)

We try to �nd an explicit expression for P̂ looking for
the quasi-momentum operator in the form (see Ref. [7])

P̂ = p̂+ i~γ(r), (6)
in which γ(r) is a function of coordinates. We have

P̂ψnk = ~kψnk + i~γ(r)ψnk − i~e ik·r∇runk

= ~kψnk + i~ [γ(r)−∇r(lnunk)]ψnk. (7)

Putting γ(r) = ∇r(lnunk) we get P̂ψnk = ~kψnk, so
that Eq. (5) is satis�ed if

P̂ = − i~∇r + i~∇r(lnunk). (8)
In the second term in Eqs. (7) and (8) the di�erentiation
acts only on the expression in parentheses. Equation (8)
is instructive, as it shows explicitly that the operators
of momentum and quasi-momentum are distinctly di�er-
ent. By using Eqs. (4) and (5) one easily shows that
ĤP̂ = P̂ Ĥ, so that the quasi-momentum ~k is really a
constant of the motion. To say it di�erently

dP̂

dt
=

1

i~

[
P̂ , Ĥ

]
= 0, (9)

which means that the periodic potential V (r) in Eq. (1)
does not change the quasi-momentum P̂ whereas, as fol-

lows from Eq. (3), it periodically changes the momentum
p̂ and velocity v̂. Still, the electron does not radiate
because it is in the Bloch eigenenergy state. Suppose
now that, in addition to the periodic potential V (r), the
electron experiences an additional nonperiodic potential
U ex(r). This potential can be due to an external �eld,
an impurity, a defect, etc. Then the total Hamiltonian is

Ĥtot =
p̂2

2m0
+ V (r) + U ex(r). (10)

It is easy to see that
dp̂i
dt

= F pr
i + F ex

i , (11)

dP̂i
dt

= F ex
i , (12)

where F ex = −∇rU
ex(r). Thus the momentum is

changed by both periodic and nonperiodic potentials,
whereas the quasi-momentum is changed only by the ad-
ditional nonperiodic potential.

The question arises how to reconcile the oscillating
electron velocity v̂(t) described in Eqs. (2) and (3) with
the velocity appearing, for example, in the transport phe-
nomena and other kinetic e�ects in crystalline solids. The
time-dependent instantaneous velocity is given in general
in the Heisenberg picture by
v̂(t) = exp(iĤt/~)v̂ exp(− iĤt/~), (13)

and it is this velocity operator that leads to the trem-
bling motion, see Ref. [4]. Let us calculate an average of
v̂(t) on the Bloch state ψnk(r). We obtain by a simple
manipulation

v̄ = 〈ψnk|e i Ĥt/~v̂ e− i Ĥt/~|ψnk〉
= 〈ψnk|e i εnkt/~v̂ e− i εnkt/~|ψnk〉
= 〈ψnk|v̂|ψnk〉, (14)

where v̂ = p̂/m0. Thus the average velocity in the Bloch
state is time independent because of the basic property
of Eq. (4). The average velocity has been calculated in
various ways, see Refs. [9�11]. Below we use the method
based on the Hellmann�Feynman theorem [12]. Let us
�rst write the Schrödinger equation for the Bloch ampli-
tude. As follows from Eq. (4)

Ĥu(r, p̂;k)unk(r) = εn(k)unk(r), (15)
where

Ĥu(r, p̂;k) =
1

2m0
(p̂+ ~k)2 + V (r) (16)

depends parametrically on k. We have

∇kεn(k) = 〈unk|∇kĤu|unk〉 = 〈unk|
~
m0

(p̂+ ~k)|unk〉

=
~2

m0
〈unk| − i∇r + k|unk〉, (17)

in which the �rst equality follows from the Hellmann�
Feynman theorem. Further

(− i∇r + k)unk = (− i∇r + k)e− ik·rψnk

= − i e− ik·r∇rψnk, (18)
so that
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1

~
∇kεn(k) = − i

~
m0
〈unk|e− ik·r∇r|ψnk〉

= 〈ψnk|
p̂

m0
|ψnk〉 = v̄n(k). (19)

The result (19) is simple and important. It relates
the average of instantaneous velocity in the Bloch state
〈ψnk|p̂/m0|ψnk〉 to the electron energy εn(k) given as a
function of the quasi-momentum ~k. Below we will con-
sider a speci�c energy band, so we drop the band index n.

Now we want to associate the above results with an
e�ective mass of charge carriers in an energy band. In
textbooks one considers standard parabolic and spherical
energy bands described by the energy-wave vector rela-
tion ε = ~2k2/2m∗0, wherem∗0 is a constant e�ective mass
at the band edge. It is then shown that such a mass re-
lates carrier's acceleration to an external force. However,
we want to consider a more general case of spherical but
nonparabolic energy bands in which the energy depends
on the absolute value of the wave vector in an arbitrary
way, i.e. ε = ε(k). In fact, many III�V semiconduct-
ing compounds (InSb, InAs, GaSb, GaAs, InP) as well
as II�VI compounds (HgTe, CdTe, HgCdTe, HgSe) and
their alloys possess the conduction bands of this type.
In contrast to the procedure adopted in textbooks, we
de�ne an e�ective mass not by a relation between an ex-
ternal force and acceleration, but as a quantity relating
the average velocity v̄ to the quasi-momentum ~k. Thus
we de�ne the e�ective mass by the equality

m∗v̄ = ~k, (20)
where v̄ is given by Eq. (14). Since v̄ and ~k are vectors,
the mass m∗ is in principle a 3×3 tensor. Using Eq. (19)
and the sphericity of the band we calculate

v̄i =
∂ε

~∂ki
=

dε

~dk

∂k

∂ki
=

dε

~dk

ki
k

=
dε

~dk

1

k
δijkj , (21)

where in the last term we adopt the sum convention over
the repeated coordinate subscript j = 1, 2, 3. Using the
de�nition (20), the inverse mass tensor is

v̄i =

(
1

m∗

)
ij

~kj . (22)

By equating Eq. (21) with Eq. (22) we obtain(
1

m∗

)
ij

=
dε

~2dk

1

k
δij . (23)

Thus the inverse mass tensor is a scalar for a spherical
energy band

1

m∗
=

1

~2k
dε

dk
. (24)

The average velocity is �nally, see Eq. (22),

v̄ =
~k
m∗

. (25)

Recalling that v̄ = p̄/m0, see Eq. (19), we can write
p̄

m0
=

~k
m∗

, (26)

which shows an analogy between the average momentum
in the Bloch state ψk and the quasi-momentum. How-
ever, it is known that for electrons and light holes in semi-

conductors there is usually m0 � m∗, so that p̄ � ~k.
This shows once again the di�erence between momentum
and quasi-momentum.
Equation (25) represents the basic formula for velocity

used in the description of charge carriers in semiconduc-
tors and metals. Here we have obtained this formula
with two important quali�cations. First, on the left-
-hand side we have the average velocity of a carrier in
the Bloch state, not the instantaneous velocity consid-
ered in the beginning, see Eq. (2). Second, on the right-
-hand side we have the velocity e�ective mass de�ned
in Eq. (20). This mass depends in general on carrier's
energy (or wave vector). Since the average velocity v̄ is
expressed by the �rst derivative dε/dk, the velocity e�ec-
tive mass m∗ is also related to the �rst derivative dε/dk.
On the other hand, the �acceleration� e�ective mass Mij

relating force to acceleration, as introduced in textbooks,
is given by the second derivative of energy with respect
to k, so this mass does not enter into the basic formula
(25), unless one takes the simplest energy band described
by ε = ~2k2/2m∗0. As is easy to see, in this particular case
both masses are equal to m∗0. We emphasize that the ve-
locity mass, de�ned in Eq. (20), is much more useful than
the acceleration mass de�ned in textbooks. In particu-
lar, it is the velocity mass that de�nes carrier's mobility
and is measured in various experiments. We discuss this
point below.
To conclude this section, we relate the �rst derivative

dε/dki to the group velocity of a carrier in a periodic
potential. Let us form a wave packet of the Bloch states

f(r) =

∫
a(k)e ik·ruk(r)d3k

' uk0
(r)

∫
a(k)e ik·r d3k. (27)

It is assumed that the packet is narrow in k space and
it is centered around the value of k0. This means that
in the coordinate space the packet extends over several
unit cells. Thus the amplitudes a(k) in Eq. (27) are non-
-vanishing only for small values of q = k− k0. In conse-
quence, it is possible to take an average value of uk0

(r)
out of the integral sign. We further have

f(r) = uk0
(r)e ik0·r

∫
a(k)e iq·r d3q. (28)

The integrand on the right-hand side of Eq. (28) is for-
mally identical to that of a free particle and one may
apply to this wave packet the well known arguments de-
termining the group velocity, which gives

vgri =
∂ω

∂ki

∣∣∣∣
k0

=
∂ε

~∂ki

∣∣∣∣
k0

, (29)

where the derivative is taken at k = k0. Thus the aver-
age velocity given in Eq. (19) is also the group velocity
of the carrier.
3. Two�band model. Semirelativity. Graphene

Now we consider an instructive and su�ciently general
example of a band structure in semiconductors in order to
illustrate consequences of the above formalism. As men-
tioned in relation to Eqs. (1) and (4), the Bloch states
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are solutions to the eigenenergy equation with the Hamil-
tonian having a periodic potential of the crystal lattice.
However, it is known that, for questions related to the
band structure near a speci�c point of the Brillouin zone
or to problems of carriers in external �elds, it is more
practical to work with the Luttinger�Kohn (LK) repre-
sentation (see Refs. [13] and [14]). The LK functions are
χnk(r) = e ik·run0(r), where un0(r) are the Bloch peri-
odic amplitudes taken at a �xed point k0 of the Brillouin
zone. We take for simplicity k0 = 0, i.e. the zone center.
It is clear that the LK amplitudes satisfy the eigenenergy
equation[

p̂2

2m0
+ V (r)

]
un0 = εn0un0, (30)

where εn0 is the energy of the n-th band at k = 0. One
can show that the LK functions form a complete ortho-
gonal set, so one can represent a Bloch state as

ψn′k(r) = e ik·r
∑
n

cn
′

n (k)un0(r), (31)

in which cn
′

n (k) are k-dependent coe�cients. The sum-
mation is over all bands n. What follows is the standard
procedure of transforming a di�erential eigenvalue equa-
tion into an algebraic problem. By inserting the form
(31) into initial Eq. (1), using Eq. (30), multiplying on
the left by un′0 and integrating over the unit cell, one
obtains∑

n

[
(−ε′ + εn0)δn′n +

~
m0
k·pn′n

]
cn

′

n = 0, (32)

for n′ = 1, 2, 3 . . . Here ε′ = ε − ~2k2/2m0 and pn′n =
〈un0|p̂|un0〉 are the interband matrix elements of momen-
tum. Equation (32) represents an in�nite set of equations
for cn

′

n coe�cients and the condition of non-trivial solu-
tions determines the energies εn′(k). We now assume
that an energy gap εg between the conduction and va-
lence bands is much smaller than other gaps of interest,
so we can neglect the distant bands and keep in Eq. (32)
only the two close bands [15]. In addition, we neglect the
free electron term ~2k2/2m0 in the energy as it is small
compared to the e�ective mass term, see below. Tak-
ing the zero of energy in the middle of the gap, so that
ε10 = +εg/2 and ε20 = −εg/2, the set (32) is reduced to(

+εg/2 π12 · ~k
π21 · ~k −εg/2

)(
c1
c2

)
= ε

(
c1
c2

)
, (33)

where π12 = p12/m0 and similarly for π21. Solving the
above set for the energies one obtains

ε(k) = ±
[(εg

2

)2
+ εg

~2k2

2m∗0

]1/2
, (34)

if we assume the simplest symmetry of the matrix ele-
ments giving 2π12π12/εg = (1/m∗0)δij . Here m∗0 is the
electron e�ective mass at the band edge. Plus and minus
signs correspond to the conduction and valence bands,
respectively. Bands described by Eq. (34) are spherical
and nonparabolic. For ~2k2/2m∗0 � εg/2 one can expand
the square root and obtain ε(k) = ±(εg/2 + ~2k2/2m∗0),
so that for small k values the bands are parabolic, while

for large k values they are linear in k. Using for ε(k)
relation (34) one can easily calculate the energy depen-
dence of the velocity mass m∗ given by Eq. (24). For the
conduction band one obtains

m∗ = m∗0
2ε

εg
. (35)

At the band edge ε = +εg/2 there is m∗ = m∗0, as it
should be. The band-edge mass m∗0 in most semicon-
ducting materials is much smaller than the free electron
mass m0, so neglecting the free electron term ~2k2/2m0

in Eq. (32) was justi�ed.
It was remarked that the two-band k·p̂ model (2BM)

for the band structure of semiconductors closely resem-
bles the description of free relativistic electrons in a vac-
uum [16�18]. The Hamiltonian (33), having the quasi-
-momentum terms o� the diagonal, looks very much
like the Dirac equation without spin, while the disper-
sion (34) is analogous to the relativistic relation E =

±
√

(m0c2)2 + c2p2 with the correspondence p̂→ ~k and

2m0c
2 → εg and m0 → m∗0. (36)

It is easy to determine the maximum velocity u in the
2BM

c =

(
2m0c

2

2m0

)1/2

→
(

εg
2m∗0

)1/2

= u. (37)

In light of our previous considerations, u is the maxi-
mum average velocity in the Bloch state. The value of u
can be determined by measuring the energy gap εg and
the band-edge mass m∗0 in a semiconductor material. It
turns out that the velocity u is almost the same in dif-
ferent materials and is given by u ≈ 108 cm/s, i.e. it is
about 300 times smaller than the maximum velocity for
relativistic electrons in a vacuum c. Using Eq. (37) for u
one can rewrite Eq. (35) in the form

ε = m∗u2. (38)
This is equivalent to the famous Einstein formula: E =
mc2 relating the energy to the mass. The Compton wave-
length λC = ~/m0c, playing an important role in the
relativistic quantum mechanics, also has a corresponding
length in the two-band k·p̂ model, see Ref. [2]:

λZ =
~

m∗0u
= ~

(
2

m∗0εg

)1/2

. (39)

This length determines the amplitude of Zitterbewegung
oscillations mentioned in the Introduction, see [2]. In
narrow-gap semiconductors one can have m∗0 = 5 ×
10−2m0 and, since c ≈ 300u, one obtains λZ ≈ 2 ×
104λC ≈ 50 Å, i.e. a sizable length for nanostructures.
The dispersion relation (34) can be rewritten in terms
of u and λZ in the form

ε(k) = ±~u
(
λ−2Z + k2

)1/2
. (40)

For k2 ≥ 0, Eq. (40) describes the conduction and
light-hole bands. For k2 < 0, that is for imaginary val-
ues of k = iκ, this equation describes the dispersion
in the gap. The latter can be determined in metal�
semiconductor tunnelling experiments. In Fig. 1 we show
the results of Parker and Mead [19] for InAs, as de-
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scribed by Eq. (40) with the use of adjustable parameters
u and λZ. One obtains a very good description which
con�rms the validity of the two-band model for narrow-
-gap materials. In particular, one obtains the above men-
tioned large value of λZ.

Fig. 1. Energy-wave vector dependence in the forbid-
den gap of InAs. Various symbols show experimental
data of Parker and Mead [18], the solid line is theoret-
ical �t using Eq. (40). The determined parameters are
λZ = 41.5 Å and u = 1.33× 108 cm/s. After Ref. [2].

Regarding the phenomenon of Zitterbewegung we want
to emphasize the following subtle point. If one cal-
culates the velocity operator using the matrix Hamil-
tonian (33): v̂i = ∂Ĥ/∂~ki, the velocity matrix does
not commute with the Hamiltonian: v̂iĤ − Ĥv̂i 6= 0,
so the velocity depends on time and it is the instanta-
neous velocity containing the Zitterbewegung, see Refs.
[4, 20]. However, if one calculates the velocity using the
energy (34): v̄i = ∂ε/∂~ki, it is the average velocity not
depending on time and given by Eq. (25). This means
that the two-band model in the matrix form still �keeps
track� of the periodic Hamiltonian (1) from which it orig-
inates, because both give the Zitterbewegung. On the
other hand, in the energy (34) the track of periodicity
of the original Hamiltonian (1) is already lost. One can
use the LK transformation to separate the conduction
and valence bands in the Hamiltonian (33), which gives
ε± = ±(εg/2 + ~2k2/2m∗0) corresponding to the above
mentioned expansion of the square root in Eq. (34). In
this case the velocity is v̄±i = ∂ε±/∂~ki = ±~ki/m∗0, i.e.
it is the average velocity for each band with no Zitter-
bewegung. Thus the two-band model is the simplest k·p̂
description reproducing the essential features of the ini-
tial periodic Hamiltonian (1).

Finally, we want to consider brie�y the important case
of monolayer two-dimensional graphene in light of the
above discussion. Graphene's band structure near the K
point of the Brillouin zone is described by the Hamilto-
nian [21]:

Ĥ = ~u

(
0 kx − iky

kx + iky 0

)
, (41)

where u ≈ 108 cm/s. The above form can be consid-
ered to be a special case of the two-band model (33)
with the vanishing gap εg = 0 and properly chosen ma-
trix elements πx12 and πy12. The resulting energy dis-
persion is linear in quasi-momentum: ε = ±u~k, where
k =

√
k2x + k2y. In view of our semi-relativistic analogy

this case can be considered to be the �extreme relativis-
tic limit�. The matrix velocity operator v̂i = ∂Ĥ/∂~ki
does not commute with the Hamiltonian (41) and the
instantaneous velocity contains the ZB component [20].
The velocity v̄i = ∂ε/∂~ki = uki/k represents an aver-
age velocity calculated in Eq. (21). The absolute value

of velocity vector for any direction is v̄ =
√
v2x + v2y = u.

The velocity mass can still be de�ned as before: 1/m∗ =
(1/~2k)dε/dk. For the linear band dispersion one has
dε/dk = u, so that m∗ = ~k/u = ε/u2. This gives,
as before, ε = m∗u2, see Eq. (38). One can also write
m∗ = ε/u2 which means that at the band edge (called
in the literature �the Dirac point�) the e�ective mass is
zero, but as the energy increases the mass increases as
well. Now let us suppose that an external force is ap-
plied along the x direction to an electron characterized by
ky = 0. According to Eq. (12) there is d(~kx)/dt = F ex

x .
Since ky = 0 there is ~kx = m∗v̄x = m∗u. Thus the
change of ~kx due to the external force goes entirely into
the change of the mass.
4. Velocity and acceleration e�ective masses

In this section we consider the use of the velocity ef-
fective mass in spherical and spheroidal energy bands.
At the end we mention some properties of the accelera-
tion e�ective mass of charge carriers. We begin with the
velocity mass m∗ which, as mentioned above, is much
more useful than the acceleration mass. In our consider-
ations below we are concerned with the average electron
motion related to the quasi-momentum, so we drop the
sign of �average� over the velocity, i.e. we write v̄ = v.
The important property of the velocity mass is that it
is measured in the cyclotron resonance (CR). We �rst
demonstrate it using the classical electron motion in a
magnetic �eld. The equation of motion is

d(~k)

dt
= e(v ×B), (42)

where B = [0, 0, B] is a magnetic �eld applied along the
z direction. Using the de�nition (20) of the velocity mass
for a spherical band: ~k = m∗v, we have

m∗
dv

dt
= e(v ×B). (43)

Since, as we showed above, m∗ for a nonparabolic band
depends in general on electron energy, one can imagine
that m∗ depends also on time if the energy during the
motion is not constant. However, it is well known that
a constant and uniform magnetic �eld does not do any
work, so the electron energy is a constant. For this rea-
son we assumed m∗ not to depend on time in arriving at
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Eq. (43). For the �rst two components the above equa-
tion gives

dvx
dt

=
eB

m∗
vy, (44)

dvy
dt

= − eB
m∗

vx. (45)

One can now di�erentiate Eq. (45) with respect to time,
insert the result into Eq. (44) and arrive at the second-
-order di�erential equation for vy, which can be easily
solved in terms of trigonometric functions. Instead, we
simply guess the solutions (see Ref. [22]): vx = v0 cos(ωt)
and vy = −v0 sin(ωt), in which ω is the cyclotron fre-
quency with which the electron circles on the orbit. Using
the above solutions one obtains from Eqs. (44) and (45)
the same result

ω =
eB

m∗
. (46)

Thus the cyclotron frequency is determined by the
velocity mass m∗. The cyclotron orbit can be ob-
tained by integrating the velocity over time, which gives:
(x− x0)2 + (y − y0)2 = v20/ω

2. This means that the clas-
sical cyclotron radius is also determined bym∗. The same
result concerning the velocity mass can be obtained from
the quantization of motion in a magnetic �eld. To be spe-
ci�c, we use the orbital and spin quantization resulting
from the band structure of InSb-type III�V semiconduct-
ing compounds. The band structure includes three levels
at the Γ point of the Brillouin zone (eight bands includ-
ing spin). The resulting quantized orbital and spin levels
are [23, 24]:

ε(n, kZ,±) =

[(εg
2

)2
+ εgDnkZ±

]1/2
, (47)

where

DnkZ± = ~ω0
c

(
n+

1

2

)
+

~2k2Z
2m∗0

± 1

2
g∗0µBB. (48)

Here ω0
c = eB/m∗0, in which m∗0 is the band-edge mass

[see Eq. (34)], g∗0 is the band-edge spin Landé factor
and µB is the Bohr magneton. The cyclotron energy
~ω is given by the energy di�erence between two consec-
utive orbital levels: ε(n + 1, kZ,±) − ε(n, kZ,±). Using
Eqs. (47) and (48) we have

~ω =
ε(n+ 1)2 − ε(n)2

ε(n+ 1) + ε(n)
=

~εgeB
m∗0

1

ε(n+ 1) + ε(n)
.(49)

For small magnetic �elds there is ε(n + 1) + ε(n) ≈ 2ε,
so that ~ω ≈ ~eB/(2m∗0ε/εg) = ~eB/m∗, see Eq. (35).
Thus, again, the cyclotron frequency is determined by the
velocity e�ective mass m∗. The same reasoning can be
applied to the so called �inverted� band structure of zero-
-gap and narrow-gap II�VI compounds based on HgTe
and HgSe, see [24].

As mentioned above, the basic relation for the classical
transport theory is ~k = m∗v. This leads to the de�ni-
tion of carrier's mobility µ = qτ/m∗, which involves the
relaxation time τ and the velocity mass m∗ [25]. As a
consequence, the mobility is directly a�ected by the en-
ergy variation of m∗(ε). Some dc transport phenomena

at high magnetic �elds do not depend on the relaxation
time so that, by studying them, one gains a direct ac-
cess to the mass m∗ [25]. Finally, the free-carrier optics
depends on the band structure only through the veloc-
ity mass. Thus the re�ectivity depends on 〈1/m∗〉, the
magneto-re�ectivity on 〈1/m∗2〉/〈1/m∗〉, the Faraday ro-
tation is proportional to 〈1/m∗2〉 and the Voigt phase
shift to 〈1/m∗3〉. Here the brackets denote appropriate
averages over electron energies in the band [25]. The
knowledge of m∗(ε) gives then a direct information on
the band structure.

Another strong indication that the velocity e�ective
mass is much more useful than the acceleration mass is
the fact that the corresponding mass is commonly used
in the special theory of relativity (STR). In STR this
mass is de�ned by the relation: p = m(v)v, it is a
scalar and it has the famous velocity dependence: m(v) =
m0/(1− v2/c2)1/2. Its energy dependence is not written
down so often, but it is not di�cult to derive. Since in
STR the energy is given by E = [(m0c

2)2 + p2c2]1/2, the
velocity is vi = ∂E/∂pi = pic

2/E, and the velocity mass
is m = E/c2 = 2m0E/(2m0c

2). It is seen that, using the
semi-relativistic analogy: m0 → m∗0 and 2m0c

2 → εg, the
relativistic velocity mass has the same energy dependence
as the e�ective velocity mass resulting from the two-band
k·p̂ model, Eq. (35). We mention that the relativistic
velocity-dependent mass m(v) is somewhat reluctantly
used in STR by some authors because of its unorthodox
transformation properties, see [27]. However, the trans-
formation problem is not relevant for solids.

To conclude our considerations of the velocity mass
we treat an important case of ellipsoidal energy bands
which occur in semiconducting II�VI lead salts PbTe,
PbSe, PbS, as well as in silicon and germanium. Such an
energy band with arbitrary nonparabolicity can be de-
scribed by the relation [25, 26]

γ(ε) = aαβkαkβ , (50)
where γ(ε) is a �reasonable� function of energy describ-
ing the nonparabolicity of the band. The limiting as-
sumption is that the shape of the ellipsoid does not vary
with the energy. We use the sum convention over the re-
peated coordinate indices. The tensor aαβ is symmetric
and it can be brought to a diagonal form by an appro-
priate rotation of coordinates in k space. Then the un-
equal diagonal components aii express band's ellipsoidal
shape. An inverse tensor of velocity mass is de�ned by
the relation (22). On the other hand, since the velocity
is vi = ∂ε/∂~ki, one obtains with the help of Eq. (50)(

1

m∗

)
ij

=
2

~2

(
dγ

dε

)−1
aij . (51)

For a parabolic band there is γ(ε) ≡ ε, and the in-
verse mass components are numbers. A spherical band
with arbitrary nonparabolicity is described by aαβ =
δαβ , the Kronecker delta. This gives γ(ε) = k2 [see
Eq. (50)], which is equivalent to the spherical case con-
sidered above.
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Finally, we calculate the inverse tensor of acceleration
mass for a spherical nonparabolic band ε(k). The gen-
eral expression of the inverse mass tensor relating force
to acceleration is well known(

1

M∗

)
ij

=
1

~2
∂2ε

∂ki∂kj
. (52)

A simple manipulation gives(
1

M∗

)
ij

=
1

~2k
∂ε

∂k
δij +

kikj
k2

(
d2ε

~2dk2
− 1

h2k

dε

dk

)
.

(53)
It is seen that, in contrast to the velocity mass, the accel-
eration mass is not a scalar quantity even for a spherical
energy band. Interestingly, it is the band nonparabolicity
that makes the acceleration mass non-scalar. For a stan-
dard parabolic band: ε = ~2k2/2m∗0, the second term in
Eq. (53) vanishes, so that (1/M∗)ij = (1/m∗0)δij . This
is identical with the velocity mass for a parabolic band.
Only in this simple case the two masses coincide. Because
of the non-scalar character of the acceleration mass (53),
the acceleration in a nonparabolic band is not parallel to
the force. This feature is well known in the special rel-
ativity, which illustrates once again the semi-relativistic
analogy.

5. Conclusions and summary

We summarize our work by enumerating the main con-
clusions and indicating the corresponding equations. For
a carrier moving in a periodic potential, the momentum,
velocity, and acceleration are not constants of the mo-
tion, see Eqs. (1)�(3). The quasi-momentum, which is
a distinctly di�erent operator from the momentum, see
Eq. (8), is a constant of the motion in a Bloch state, see
Eq. (9). The average electron velocity in a Bloch state
is given by a gradient of the energy with respect to the
quasi-momentum ~k, see Eq. (19). It is this average ve-
locity v̄ which is used in the classical transport theory
for charge carriers. A �velocity e�ective mass� is de�ned
as a quantity relating the average velocity to the quasi-
-momentum, see Eqs. (20) and (21). The velocity mass
for a spherical energy band is a scalar, see Eq. (23), and
it enters into the basic relation for the transport theory,
see Eq. (25). A two-band k·p̂ model in the matrix form
is the simplest description of the band structure that still
keeps track of the periodic potential, see Eq. (33). The
two-band k·p̂ Hamiltonian (33) and the resulting energy
(34) bear strong similarity to the description of free rel-
ativistic electrons in a vacuum. In particular, they lead
to an analog of the famous Einstein relation between the
mass and the energy, see Eq. (38). In this perspective, the
band structure of gapless graphene can be regarded as an
extreme relativistic case. The velocity e�ective mass is
much more useful than the acceleration mass commonly
introduced in solid state textbooks. In particular, it is
the velocity mass that is measured in the cyclotron reso-
nance, see Eqs. (46) and (49), in dc transport phenomena
and in the free-carrier optics. The velocity mass can also
be introduced for ellipsoidal nonparabolic energy bands,
see Eq. (51).
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