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An experimental study of the “diffusion-gravitational convection” transition boundary in an Ar—N> binary
system at different pressures and a constant temperature gradient is performed. It is shown that the diffusion is
replaced by the gravitational convection at a pressure p ~ 0.5 MPa. In terms of the stability theory, a perturbation
boundary line is determined, dividing the Rayleigh numbers plane into the regions of the diffusion and the convective
mass transfer. The experimental data agree well with the theoretical values.
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1. Introduction

A spontaneous penetration of one substance into an-
other is a phenomenon known as diffusion, which fre-
quently occurs in nature and engineering, facilitating an
equalization of the concentration gradient in a given vol-
ume. The rate of mixing depends on the heat motion
of molecules; the smaller the molecular weight and the
higher the temperature, the shorter the time of full mix-
ing. More intensive mixing can be achieved with the
convective mass transfer, which is implemented by force
or under special conditions for flows of matter arising due
to diffusion processes.

The oceanographic investigations, which were per-
formed in the latter half of the last century, revealed
“salt fountains” [1, 2] representing water regions with a
sharply marked density boundary. The laboratory stud-
ies [3, 4] demonstrated that, because of temperature and
salinity gradients and a slower horizontal transport of salt
as compared to the heat transfer, long narrow convective
cells moving alternately up and down are formed in the
bulk of the liquid. This convective motion was called
“double diffusive convection” [5] or gravitational convec-
tion. Double diffusive convection appears in a liquid if
one condition is fulfilled: the liquid contains two or more
components with different diffusion coefficients and these
components should make opposite contributions to the
vertical density gradient [6, 7]. Investigations of melting
of ice blocks [8] and the evolution of ice coats of ponds
[9] showed that, upon exposure to solar radiation, denser
freshwater remains beneath thinner seawater, flowing off
over some slightly sloping vertical layers formed under
the mutual effect of the temperature and salinity gradi-
ents.
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Studies of the thermo-effect in ternary gas mixtures re-
vealed irregular oscillations of the temperature in the dif-
fusion apparatus [10, 11]. Later investigations of isother-
mal ternary gas mixtures showed that double diffusive
convection is possible not only in systems with a stable
stratification of the density, but also in systems with a
negative density gradient [12-15]. There are now few
studies on the mechanical equilibrium instability in non-
-isothermal conditions. They deal with the condition of
a stable stratification of the mixture density. Therefore,
it seems reasonable to explore the alteration of the “non-
-isothermal diffusion — gravitational convection” regimes
with an unstable stratification of the density in the sim-
plest mixture, namely, a binary system. In this case, two
(concentration and temperature) gradients are formed,
making opposite contributions to the vertical density gra-
dient. In this case, the conditions for the mass transfer
typical of double diffusive convection are observed.

This paper reports experimental data on the processes
of mixing in the Ar—Ns binary gas system with a temper-
ature gradient and, also, presents a theoretical analysis
of the stability of the gas mixture.

2. Experiment

The experiments were performed by the two-flask
method, which is widely used to determine diffusion co-
efficients in a wide range of temperatures and pressures
[16, 17]. The two-flask installations consisted of two basic
components, Fig. 1 [18].

One of the components is a gas preparation unit made
up of a set of needle valves (1-10) for filling of the
temperature-controlled flasks with initial gases from the
high-pressure cylinders A and B, a tank (13) equalizing
the pressures in the flasks, and control pressure gages
(12) with special membrane dividers (11) isolating the
pressure gage chamber from the volume of the flask. To
avoid the effect of stray capacitances, the gas pipelines
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Fig. 1. Block diagram of the installation. I — gas
preparation unit; II — two-flask apparatus; (1)—(10)
valves; (11) membrane dividers; (12) reference pressure
gages; (13) equalizing tank; (14) bottom flask; (15) dif-
fusion capillary; (16) top flask; (17) fluoroplastic pellet;
(18) rod; (19) handwheel.

were made of stainless-steel capillary tubes no more than
1.0 x 1073 m in internal diameter, minimizing the effect
of unaccounted volumes.

The second component of the installation is the diffu-
sion apparatus itself, which is also made of stainless steel.
It consisted of two temperature-controlled flasks (14, 16)
with preset volumes Vi and Vi1 equal to 62.8 x 1076 m3,
which were connected through a capillary (15) of radius
r = 2x1073 m and of length [ = 63.9x1073 m. In the top
flask the capillary was stopped with a fluoroplastic pel-
let (17) attached to a rod (18), which could be advanced
vertically by clockwise rotating a handwheel (19). The
shut-off device was designed such that the volumes of the
apparatus flasks remained unchanged at the moment the
capillary was open or closed. The experiments were car-
ried out at the change of pressure from 0.2 to 0.9 MPa and
a constant value of temperature gradient. Meanwhile, the
heavy gas Ar was placed in the top flask at a temperature
of 283.0 £0.1 K, while the light gas Ny was placed in the
bottom flask at a temperature of 343.0 0.1 K. A study
with the top and bottom flasks of the diffusion apparatus
held at a temperature of 295.0+0.1 K was conducted for
comparison.

The experimental procedure on the installation was as
follows. The capillary between the flasks was stopped,
one of the flasks was evacuated using a backing pump,
then this flask was washed several times with the cor-
responding gas from the high-pressure cylinder, and fi-
nally it was filled with the gas to the experimental pres-
sure. An analogous procedure was applied to the other
flask. The gas pressure in the flasks of the apparatus was
read against reference pressure gages (12). The abso-
lute experimental pressure is the sum of the atmospheric
pressure, which was determined by a MBP manometer-
-barometer, and the excess pressure read by a reference
pressure gage. As soon as the installation reached the
preset temperature regime, the pressure in the flasks was
equalized through a special tank (13), and the excess gas
was bled to the atmosphere through a valve (9). Then the
capillary (15) was opened, and the experiment start time
was noted simultaneously. In a certain period of time

(960 s), the channel was shut-off, and the gases were an-
alyzed in a chromatograph. The obtained experimental
data were compared with the results of the calculations
by the Stephen—Maxwell equations on the assumption
of stable diffusion process [19]. If the experimental and
theoretical values of the concentrations coincided, non-
-isothermal diffusion occurred in the system. If these
values were considerably different, then the free convec-
tive was observed.

The experimental data are shown in Fig. 2 as the
dependence of parameter @ = —=Pi on the pressure

Ctheor;
where ¢; is the concentration of diffused components. It
is seen from Fig. 2 that, up to some pressure, the pa-
rameter « is on the order of unity. Hence, even with an
unstable stratification of the mixture density, the condi-
tions for molecular diffusion can be formed in this mix-
ture. Starting from a pressure p = 0.5 MPa, the param-
eter « increases linearly with growing pressure. In this
situation, one can suggest the presence of free convective
flows, which are due to instability of the mechanical equi-
librium of the mixture. It should be noted that in the
case of isothermal and non-isothermal mixing, the dif-
fusion process undergoes a transition to the convective
process at the same pressure.
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Fig. 2. Pressure dependence of the parameter a. The

symbols O, m, A, and A denote the experimental data
for argon and nitrogen in stable and unstable states,
respectively, in the case of non-isothermal mixing. The
symbols o and e refer to the isothermal process. The
solid line corresponds to the calculations made on the
assumption of diffusion. Dashed lines are guides for eye.

As can be seen from Fig. 2, the parameter « is larger for
isothermal than non-isothermal mixing. The influence of
temperature gradient in the initial stage of the process
(approximately ~ 0.5 MPa) under the unstable diffusion
at the isothermal and nonisothermic conditions makes no
difference practically. The differences are in the limits of
analysis’ error of gas mixtures after the diffusion. When
we further increase the pressure, while the main concen-
tration shift happened, the transfer of components under
nonisothermic conditions grows considerably in compar-
ison with the isothermal one. That indicates the role
of temperature gradient in the intensification of unsta-
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ble process. Thus, the researches have shown that the
intensity of unstable process increases when heating the
lower flask. It is connected with the different contribu-
tion of the competitive quantities depending indirectly
on the temperature to the concentration convection, viz.
the diffusion coefficients (stabilizes process), the density
(destabilizes process) and the mixture viscosity (stabi-
lizes process). It seems that the density role is major.

3. Mass transfer model

The macroscopic motion of a binary gas mixture in a
temperature field will be described in terms of the sta-
bility theory [20, 21]. In this case, the general set of
equations of fluid dynamics consists of the Navier—Stokes
equation of motion, the continuity equation, and the heat
and mass transfer equations

ou
{875 + (uV) ] = —Vp+nViu+ pg,

oT (gt + uVs) = —divg + pdivy,

dc
(825 + UVC) = —divy, 8t Py div(pv) =0, (1)
whereap:ﬁandu— P

The flow densities j and q from Eq. (1) can be ex-
pressed as the gradients of temperature, concentration,
and pressure. If considerable pressure gradients are ab-
sent in the given gas mixture, we shall have

3
j=—pDis (vc + ;VT> ,

ou ou
-(57), e (%),

Let us express p, ¢, and T as

p=@)+p, c={()+cd, andT=(T)+T", (3)
where (p), (c) and (T") are average values taken as the ref-
erence points; p’, ¢/, and T” are small perturbations. We
shall assume that a change in the density, which is caused
by a pressure inhomogeneity, is small as compared with
the changes resulting from the temperature and compo-
sition inhomogeneities; hence, the pressure should not
change considerably throughout the gas mixture; and the
density p exhibits a linear dependence on ¢ and 7"

q=—xVT+ (2)

p=po(l—=HT - pd), (4)
where pg = p({p), {c),(T)), By is the thermal expansion
coefficient of the mixture, and By = —-+ (%) de-

Po c)r P

termines the dependence of the density on the mixture
composition.
Write the variation of the mixture entropy in the form

Js 0s
ds = <3T>C,p dT + <3c) de

- <Cp> ar — (géf ) de. (5)

Substituting (2)—(5) into (1), considering smallness
of nonstationary perturbations, neglecting the terms
quadratic in perturbations, rendering the deduced set of
equations dimensionless, and taking into account that,
although uw and v are different in the general case, their
perturbations are approximately of the same value, we
shall have (the primes at the perturbed values being

omitted):
8u 2
a:—VerV u+(RcT+RTC)73
oT _ 2 a2
Pa —(uy)=(14a)V°T + ZV c,
dc 2 2 .
pdaf( uy) =Vc+ bV T, divu=0, (6)

where r is the characteristic distance measurement scale,
r?/v stands for the time, x/r stands for the rate,
Ar stands for the temperature; Bxr/Di;o stands for
the concentration (A is determined from the expression
VT, = —A~; B from Veg = —B7); with povy/r? be-
ing the pressure, R, = gﬁl;” and Ry = % are the
Rayleigh diffusion and heat numbers, v = n/pg, P = v/x,
Py =v/D1a,a =a?NDis/x and b = aD12A/xB are the
parameters characterizing thermal diffusion and diffusion
heat conductivity, « = kg /T, N = [gp <%Z)T,p]0 is a
thermodynamic parameter (the values in square brack-
ets are taken at average values of the temperature and
the concentration). If the temperature gradient is small,
the cross effects are assumed to be insignificant, i.e.

a=0b=0.
V4 /
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Fig. 3. Geometry of the problem. The system of coor-
dinates.

For simplicity, the geometry of the problem is pre-
sented as an infinite flat vertical channel (Fig. 3). From
geometrical considerations we shall take that the pertur-
bations are plane-parallel, are directed along the z-axis,
and depend only on one coordinate x:

T =T(x).

It is assumed that the solution of the set (6) has the
form

{e,Tou} = {790} sin ((n+ 1)%) exp(=AL), (7)
where n =1,3,5,...

Uy =uy =0, u,=u(zr), c=c(x),

are characteristic odd modes of per-
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turbations. The boundary conditions suggest that the
velocity and perturbations of the concentration and the
temperature become zero in the vertical planes limiting
the layer of the gas mixture:

’U,:C:T:O’ l‘:il

Simultaneous solution of (6) and (7) provides a cubic
equation for the decrements A,

P2+ g\ +rA 45 =0, (8)
with the coefficients p = PPy, ¢ = —w2(P + Py + PPy),
r=na*(1+ P+ Py) — (PRr + P4R.), and s = —72(7* —
R. — Rr). The solution of (8) gives boundary lines of
monotonic and oscillating perturbations in the form

Re+ Ry =%, (9)

2 2

Py R+ P
1+ Py 1+P
Figure 4 presents a Rayleigh numbers plane with a
boundary line of monotonic perturbations, MM, plotted
on this plane. One can see that the boundary line MM
divides the plane into two regions, namely, a region of
growing perturbations above the line MM and a region

of decaying perturbations below this line.

Rr =714 (P + Py). (10)

Re

LIS

Fig. 4. Line of monotonic perturbations, MM, and
the experimental data for the Ar—-Ns system on the
plane (Rr, Rc). The points correspond to the pres-
sure: (1) 0.241, (2) 0.338, (3) 0.486, (4) 0.584, (5) 0.682,
(6) 0.878 MPa. AT = (60.0+0.1) K.

For comparison with the theoretical values, we recon-
struct the experimental data as partial Rayleigh num-
bers. If the experimental conditions (the pressure p, the
temperature and the composition contents of the mix-
tures in each of the flasks, the capillary dimensions r
and L, and the acceleration ¢) are known, then from the
following formulae:
grinAmAc gr‘%%AT 1

pvD1sL pvxL (11)
it is possible to determine the point in the Rayleigh num-
bers plane, which the given experiment reflects. Here
n = %, Am = mq — msy is the difference between the
molecular masses of the first and second components,
Ac = c1 — ¢p is the difference between the concentrations
of the selected component in the top and bottom flasks,

R.= and Rp =

AT = T7—Tqp is the difference between the temperatures
of the diffusion apparatus flasks, and m = cymy + coms.

The symbols in Fig. 4 correspond to the experimental
data for the Ar-Ny mixture, when the transition from
the state of stable diffusion to the unstable range occurs
subject to the pressure and at the constant temperature
gradient. The open and full symbols denote diffusion and
convection, respectively.

In accordance with the experimental data presented in
Fig. 4, the unstable regime occurs as from =~ 0.5 MPa.
Point 3 corresponding to the given experimental condi-
tions is situated close to the boundary line M M. Further
increase of pressure (points 4, 5 and 6) shows that all
points representing the experiment are in the area where
the convective mechanism operates. The experimental
data on mixing in theAr—Ns system presented in Fig. 2
agree with the experimental results, regarding the stabil-
ity boundary.

4. Conclusions

The study is performed with the aim to determine the
boundary of transition in a binary mixture of Ar—Ny with
an unstable stratification of the density in the presence
of a temperature gradient. It is shown experimentally
that two mixing regimes, namely, the diffusion and the
convective mass transfer occur in the binary system with
the unstable stratification of the density. The transition
between the two regimes takes place at the pressure p =
0.5 MPa. The experimental data are in good agreement
with the theoretical results obtained in terms of the linear
theory of stability.
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