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The chaotic behavior of underwater ray system is studied. Because the parabolic equation is an approximation
under small ray angle with respect to horizontal, the elliptic equation system is considered here besides the parabolic
system. We pay main attention to the interval of large ray angle. A comparison between these two forms of system
is performed. We �nd that when the ray angle is not large (θ0 = 0◦�18◦), the two systems show the same qualitative
behavior. However, in interval of large ray angle (θ0 ≥ 19◦), if the perturbation strength is not very small, e.g.
δ = 0.05, the parabolic system shows regular motion, while the elliptic system exhibits chaotic behavior in most
of this interval except a few quasiperiodic islands studded in the chaotic ocean. Dynamical behaviors of the two
systems show surprising di�erence.
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1. Introduction

Chaotic phenomenon in underwater ray system has
been discovered years ago [1]. In recent years, research
on the ray chaos in �eld of underwater acoustics is still
active. Many important results were reported [2�5]. The
ray systems have several di�erent forms such as ellip-
tic equation, parabolic equation, etc. Among them, the
parabolic system is widely used because of its simplicity.
In ray system, dynamic behavior of the ray depends on
the sound speed and the initial conditions. When the
sound speed depends only on the depth z, the system
behavior is regular. On the other hand, if the sound
speed depends on the range r, the system may exhibit
chaotic behavior [1, 2, 6, 7]. Similar phenomena also ap-
pear in a focusing �ber with range-dependent refractive
index [8, 9] and a rotor-active magnetic bearing system
with a periodically time-varying sti�ness [10].
The parabolic equation is an approximation from the

elliptic equation under small ray angle with respect to the
horizontal [6, 11]. Previous paper made a conclusion that
the parabolic system and the elliptic system exhibit the
same qualitative behavior under the periodic perturba-
tion [6]. The study of Ref. [6] was performed within the
interval of small ray angle. Other research based on the
parabolic system found that the steep rays (with larger
ray angle) are more stable than the near-axial rays (with
smaller ray angle) [12].
In many cases, e.g. under large initial ray angle, the

large ray angle is sure to be met. Then, how does the
underwater acoustic ray actually act, particularly in the
interval of large ray angle? Because of the small ray an-
gle approximation, we may have some reasons to question
the result of the parabolic system in this interval. In this
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paper, the one-way elliptic equation, which is not limited
within the interval of small ray angle, is applied to make
a more exact solution under large ray angle. This gives
a full view on the dynamic behavior of the underwater
ray system. The nonlinear dynamic tools such as the
Poincaré section, the Lyapunov exponent, correlation di-
mension are used to describe the chaotic property of the
system when the periodic perturbation is added and its
strength increases. A comparison between the parabolic
system and the one-way elliptic system is performed. The
results indicate that if the initial ray angle is not large,
these two systems are in good agreement. However, in
interval of large ray angle, when the strength of the pe-
riodic perturbation is not very small, the results of the
two systems are di�erent.

2. System model

The sound propagation in the ocean can be described
by the ray system under some conditions. One form
of the acoustic ray equation consistent with the elliptic
(Helmholtz) wave equation is [6]:

dz

dr
=
∂H

∂kz
, (1a)

dkz
dr

= −∂H
∂z

. (1b)

Here H is the Hamiltonian,

H(z, kz, r) = −kr = −
[
ω2/c2(z, r)− k2z

]1/2
, (2)

where z is the depth which is de�ned positive downwards,
r is the range, and ω is the angular frequency of the sound
wave, c(z, r) is the sound speed, k = (kz, kr) with |k| = k
is the wave-number vector. Equation (1) is called one-
-way elliptic equation.
When the ray angle with respect to the horizontal θ

(θ = tan−1(kz/kr)) is small, i.e. |θ| � 1, Eq. (1) can be

(53)

http://dx.doi.org/10.12693/APhysPolA.123.53
mailto:lixiaojun@nwu.edu.cn


54 S.-H. Li, X.-J. Li

reduced to the following form through a special approxi-
mation [6, 11]:

dz

dr
=
∂H

∂p
, (3a)

dp

dr
= −∂H

∂z
, (3b)

where

H(z, p, r) = p2/2 + [c(z, r)− c0] /c0. (4)

Here p = tan θ, and c is the reference sound speed.
Equation (3) is the parabolic equation. For its sim-
plicity in theoretical analysis and numerical calculation,
the parabolic system is widely used in researches on ray
systems.
Substituting Eq. (2) into Eq. (1) gives

dz

dr
= kz

[
ω2/c2(z, r)− k2z

]−1/2
, (5a)

dkz
dr

= −
[
ω2/c2(z, r)− k2z

]−1/2 ω2

c3(z, r)
cz(z, r). (5b)

Here cz(z, r) = ∂c(z, r)/∂z.
Substituting Eq. (4) into Eq. (3) gives

dz

dr
= p, (6a)

dp

dr
= − 1

c0
cz(z, r). (6b)

Above systems, both parabolic equation and elliptic
equation, are integrable and thus show regular behavior
when the sound speed is independent of range. On the
other hand, when the sound speed is range-dependent,
generally, the above systems are non-integrable and may
exhibit chaotic dynamic behavior [1, 6]. Here we can see
that the sound speed plays an important role in deter-
mining the manner of the system behavior. This paper
actually bases on an investigation that how the sound
speed a�ects the ray behavior.
The sound speed used in this paper is shown as be-

low [6]:

c(z, r) = c0

[
1 + ε(e−η + η − 1)

+ δ(2z/B)e−2z/B cos(2πr/λ)
]
, (7)

where η = 2(z − zaxis)/B is a scaled depth coordinate,
zaxis is the sound channel axis depth, B is the depth scale.
In Eq. (7), the �rst term together with the second term
in the square bracket is a range-independent background
sound-speed pro�le, which is the Munk model [13]. The
third term in the square bracket represents the periodic
range-dependent perturbation. ε and δ are coe�cients.
λ is the wavelength of the periodic perturbation, and δ
may be considered as perturbation strength. Then

cz(z, r) =
∂c(z, r)

∂z
= c0

2

B

[
ε(1− e−η)

+ δ e−
2z
B

(
1− 2z

B

)
cos(2πr/λ)

]
. (8)

In order to make a comparison with previous research,
values of some parameters and coe�cients in the Munk

background pro�le and the periodic range-dependent per-
turbation are taken the same as they were in previous pa-
pers [6]. Here c0 = 1.49 km/s, zaxis = 1 km, B = 1 km,
λ = 10 km, ε = 0.0057.

3. Numerical calculations and discussions

In this section, dynamic behaviors of the parabolic sys-
tem and the elliptic system under the periodic range-
-dependent perturbation are investigated numerically.
A comparison between results of the elliptic system and
the parabolic system in the interval of large initial ray
angle is performed.
Based on the elliptic system Eq. (5) and the parabolic

system Eq. (6), a variety of numerical calculations are
performed. The system behavior is studied using some
nonlinear dynamic tools such as the Poincaré section, the
Lyapunov exponent, correlation dimension, etc. The dif-
ferential equations are solved by means of fourth-order
Runge�Kutta method. The sound source is placed at
the sound channel axis so the initial depth z0 = 1 km.
A number of trajectories corresponding to the initial ray
angle θ0 = 0◦, 1◦, . . . , 30◦, are studied.
The Poincaré sections of the parabolic system and the

elliptic system are given in Figs. 1�3. Figures 1�3 are ver-
sus the periodic perturbation strength δ = 0.01, δ = 0.03,
and δ = 0.05, respectively. A comparison is made be-
tween the two systems here. Parts (a) in Figs. 1�3 are,
versus the parabolic system, and parts (b) in these �g-
ures versus the elliptic system. We can �nd in Fig. 1
that, under small strength of the periodic perturbation
(δ = 0.01), the two systems show the same qualitative
behavior. While in Fig. 3, under a bit larger perturba-
tion strength (δ = 0.05), when the initial ray angle is
small, e.g. θ0 = 0◦�4◦, the Poincaré sections of the two
system are closed curves. This means that the two sys-
tems all exhibit regular behavior. For those trajectories
whose initial angles are moderate e.g. θ0 = 5◦, 6◦, . . . ,
18◦, the Poincaré sections of the two systems appear as
the scatter spots, this means that both systems exhibit
chaotic behavior. In all, we may conclude that in above
interval of initial ray angle, the two systems exhibit the
same qualitative behavior. But if we devote our mind
into the interval of large initial ray angle, the situations
would be quite di�erent. For θ0 ≥ 19◦, the parabolic sys-
tem shows regular motion. However, the elliptic system
exhibits chaotic behavior in most of this interval except
a few quasiperiodic islands studded in the chaotic ocean.
Evolvement of the di�erence between the dynamic be-

haviors of the two systems can be seen in Figs. 1�3. In the
elliptic system, some originally regular trajectories with
large initial ray angle split into successions of regular or-
bits at smaller scale. When the perturbation strength
increases, the overlap of resonance zone occurs. There-
fore, the condition of the KAM theorem begins to break
down. Then, the chaos appears [14]. However, in the
parabolic system, such overlap of resonance zone does
not happen, and trajectories with large initial ray angle
remain regular.



A Simulation Research on Chaotic Behavior . . . 55

Fig. 1. Poincaré sections of the systems. δ = 0.01.
(a) Parabolic system, (b) elliptic system.

Fig. 2. As in Fig. 1, but for δ = 0.03.

Fig. 3. As in Fig. 1, but for δ = 0.05.

Above investigation by means of the Poincaré section
gives a qualitative view on the di�erence of the dynamic
behavior of the two systems. Further more, we need
the way to tell how irregularity of the system behavior
evolves. One of such quantitative tools is known as the
Lyapunov exponent. The Lyapunov exponent is the av-
erage exponential rate of divergence or convergence of
neighboring orbits in phase space. Consider a dynamic
system

dX

dt
= F (X), (9)

whereX is an n-dimensional vector in the state space. In
the parabolic ray system which is presented in this paper,
X = (z, p)T, and in the elliptic system,X = (z, kz)

T. t is
corresponding to the range r. The evolution of the tan-
gent vector W in the tangent space of X(t) is given by
the linearization of Eq. (9),

δẆ = FX(W )δW , (10)

where W is an n-dimensional eigenvector which repre-
sents the evolution of a coordinate system corresponding
to the Lyapunov exponent, and δW is the signi�cantly
small disturbance to W . Let δW be the n-dimensional
basis of the tangent space, then the Lyapunov exponents
λi are given by [7]:

λi = lim
t→∞

1

t
ln
‖δW i(t)‖
‖δW i(t0)‖

(i = 1, 2, . . . , n), (11)

where W i(t) is the i-th basis vector in tangent space, t0
is the initial time.
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A system with positive Lyapunov exponent is chaotic,
and if all of the Lyapunov exponents of the system are
no more than zero, this system is regular. The Lyapunov
exponent is calculated by computer numerical method in
this paper.
In addition, we choose correlation dimension (D2) as

another quantitative tool to describe the system behav-
ior. Correlation dimension images the spatial shape of
the system orbit from view of geometry and topology.
Correlation dimension can be measured through a time

series taken from the system: x(t1), x(t2), x(t3), . . . ,
where x(ti) ∈ R, ti = t0 + i∆t. The measurement x(t) in
fact represents a projection from full state vector X(t) ∈
RM: π:RM → R. Here the time t corresponds to the
range r in the ray system, and the time series x(t) can
be depth z or ray angle θ taken from a single trajectory
in the parabolic system (in the elliptic system, it is kz
instead of z).

A vector X̂(t) representing the reconstructed state

space is de�ned: X̂(t) = [x(t), x(t−∆t), . . . , x(t− (m−
1)∆t)]T, where ∆t is the delay time and m is the em-
bedding dimension. Then, correlation dimension can be
calculated from correlation integral [15]. Correlation in-
tegral can be directly calculated from a �nite time series

C(ε) =
1

N(N − 1)

N∑
i=1

N∑
j=1
i6=j

Θ
(
ε− ||X̂i − X̂j ||

)
, (12)

where

Θ(x) =

{
1, x > 0,

0, x ≤ 0,

N is size of the time series X̂(t).
Thus, there is the following correlation dimension for-

mula for �nite time series for a large enough embedding
dimension:

υ = lim
ε→0

lim
N→∞

logC(N, ε)

log ε
. (13)

The algorithm of calculating correlation dimension ac-
cording to Eq. (13) converges very slow as ε → 0. The
e�ciency of getting correlation integral is too low. To
solve this problem, calculation method of local slope is
used

υ̂ =
d logC(N, ε)

d log ε
=

∆ logC(N, ε)

∆ log ε
. (14)

In some region, the curve of local slope υ̂ is relatively
smooth. This region is called linear smooth region where
υ̂ ≈ υ. It should be noticed that only when embedding
dimension is big enough, the calculated correlation di-
mension is the real correlation dimension, that is υ = D2.
For a quasiperiodic orbit in our two-dimensional sys-

tem, value of the correlation dimension is 2.0, and for the
chaotic attractor, the correlation dimension is a fraction
more than 2.0. The correlation dimension is also cal-
culated numerically with a self-edit computer program
here.

The Lyapunov exponents and the correlation dimen-
sion are given in Fig. 4 and Fig. 5, respectively. Parts
(a) and parts (b) are versus the periodic perturbation
strength δ = 0.01 and δ = 0.05, respectively. The solid
line corresponds to the elliptic system and the dashed line
to the parabolic system in these two �gures. In Fig. 4,
only the maximum Lyapunov exponent is given.

Fig. 4. Lyapunov exponent on the initial ray angle.
Solid line: the elliptic system; dashed line: the parabolic
system. (a) δ = 0.01, (b) δ = 0.05.

Fig. 5. Correlation dimension on the initial ray angle.
Solid line: the elliptic system; dashed line: the parabolic
system. (a) δ = 0.01, (b) δ = 0.05.

It can be found in Fig. 4a and Fig. 5a that the Lya-
punov exponent curves and correlation dimension curves
of the two systems have identical fashion when the peri-
odic perturbation strength δ = 0.01. This indicates that
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the two systems have the same dynamical characteris-
tics under this condition. Then considering Fig. 4b and
Fig. 5b (δ = 0.05), some di�erences of chaotic behavior
between the two systems would be found. When the ini-
tial ray angle is not large, the Lyapunov exponents and
correlation dimension of the two systems have identical
varying tendency. But when θ0 is large, the curves of the
two systems separate. The Lyapunov exponent of the
parabolic system turns to decrease to zero (correlation
dimension decreases to 2.0), i.e. in this interval, behavior
of the parabolic system is regular. However, the behav-
ior of the elliptic system remains chaotic in most of this
interval; a few discrete zero values of the Lyapunov ex-
ponent (and values 2.0 of the correlation dimension) in
this interval correspond to the quasiperiodic islands in
Fig. 3b. By the way, it can be noticed that when the
initial ray angle is large, irregularity of the parabolic sys-
tem has a tendency of decrease. Here, irregularity of the
elliptic system has a tendency of decrease, too. The dif-
ference is that the parabolic system evolves to regular
while the elliptic system does not.

4. Summary

Chaotic behaviors of the parabolic system and the el-
liptic system have been investigated with several dynamic
tools such as the Poincaré section, the Lyapunov expo-
nent, correlation dimension, etc. A comparison between
the two systems was performed. We pay much atten-
tion to the interval of large initial ray angle, and �nd
that the dynamic behavior of the parabolic system and
the elliptic is quite di�erent from each other in this in-
terval, although they are qualitatively the same in in-
terval of small ray angle. Some trajectories with large
initial ray angle in the parabolic system appear in reg-
ular fashion, but the trajectories with the same initial
conditions in the elliptic system may exhibit chaotic be-
havior. This di�erence of dynamic behavior between the
two systems comes from the small ray angle approxima-
tion of the parabolic system, and the result of the elliptic
system may be more reasonable in this interval. The

study in this paper enlarges the scope of investigation on
ray chaos, and overcomes the limitation that some work
based on the parabolic system has.
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