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The current research deals with a way of using a new kind of periodic solutions called He's max-min approach
for the nonlinear vibration of axially loaded Euler�Bernoulli beams. By applying this technique, the beam's
natural frequencies and mode shapes can be easily obtained and a rapidly convergent sequence is obtained during
the solution. The e�ect of vibration amplitude on the non-linear frequency and buckling load is discussed. To
verify the results some comparisons are presented between max-min approach results and the exact ones to show
the accuracy of this new approach. It has been discovered that the max-min approach does not necessitate small
perturbation and is also suitably precise to both linear and nonlinear problems in physics and engineering.
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1. Introduction

Investigating on the dynamic response of beams is one
of the most important parts in the design process of
structures. Many researchers have addressed the non-
linear vibration behavior of beams, both experimentally
and theoretically. Burgreen [1] considered the free vi-
brations of a simply supported buckled beam theoreti-
cally and experimentally. He found out that the natural
frequencies of buckled beams depend on the amplitude
of vibration. Moon [2] and Holmes and Moon [3] used
a single-mode approximation to investigate chaotic mo-
tions of buckled beams under external harmonic excita-
tions. Abu�Rayan et al. [4] continue the study on the
nonlinear dynamics of a simply supported buckled beam
using a single-mode approximation to a principal para-
metric resonance. Ramu et al. [5] used a single-mode
approximation to study the chaotic motion of a simply
supported buckled beam. Reynolds and Dowell [6, 7]
used multi-mode Galerkin discretization to analyze the
chaotic motion of a simply supported buckled beam un-
der a harmonic excitation. They used Melnikov theory
in their analysis. Lestari and Hanagud [8] used a single-
-mode approximation to study the nonlinear vibrations
of buckled beams with elastic end constraints. They con-
sidered the beam to be subjected simultaneously to ax-
ial and lateral loads without �rst statically buckling the
beam. The nonlinear vibration of beams and distributed
and continuous systems are governed by linear and non-
linear partial di�erential equations in space and time.
Solving nonlinear partial di�erential equations analyti-
cally is very di�cult.
It is very common to simplify the equations of mo-

tion by introducing various assumptions which allow
for the derivation of manageable governing equations.
Some of the simplifying assumptions include neglect-
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ing axial inertia [9] and assuming linear curvature [10].
The partial-di�erential equations are discrete to nonlin-
ear ordinary-di�erential equations by using the Galerkin
approach and then we can apply the direct techniques
to solve them analytically in time domain. In recent
years, many approximate analytical methods have been
proposed for studying nonlinear vibration equations of
beams and shells and etc. such as homotopy perturba-
tion [11], energy balance [12, 13], variational approach
[14, 15], max-min approach (MMA) [16], iteration per-
turbation method [17] and other analytical and numerical
methods [18�25].
The Adomian decomposition method (ADM) was ap-

plied by Lai et al. [26] to obtain an analytical solution
for nonlinear vibration of the Euler�Bernoulli beam with
di�erent supporting conditions. Naguleswaran [27] de-
veloped the work on the changes of cross-section of an
Euler�Bernoulli beam resting on elastic end supports.
Pirbodaghi et al. [28] presented an analytical expression
for geometrically free vibration of the Euler�Bernoulli
beam by using homotopy analysis method (HAM). They
point out that the amplitude of the vibration has a great
e�ect on the nonlinear frequency and buckling load of
the beams. Liu et al. [29] applied He's variational it-
eration method to assess an analytical solution for an
Euler�Bernoulli beam with di�erent supporting condi-
tions. Bayat et al. [30, 31] applied energy balance method
and variational approach method to obtain the natu-
ral frequency of the nonlinear equation of the Euler�
Bernoulli beam.
In this paper we used the Galerkin method for dis-

cretization to obtain an ordinary nonlinear di�erential
equation from the governing nonlinear partial di�erential
equation. It was then assumed that only fundamental
mode was excited. Finally, max-min approach is com-
pared with other researcher's results. The max-min ap-
proach results are accurate and only one iteration leads
to high accuracy of solutions for whole domain.
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2. Description of the problem

Consider a straight Euler�Bernoulli beam of length L,
a cross-sectional area A, the mass per unit length of the
beam m, a moment of inertia I, and a modulus of elas-
ticity E that is subjected to an axial force of magnitude
P as shown in Fig. 1.

Fig. 1. A schematic of an Euler�Bernoulli beam sub-
jected to an axial load: (a) simply supported beam,
(b) clamped-clamped beam.

The equation of motion including the e�ects of mid-
-plane stretching is given by
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For convenience, the following non-dimensional variables
are used:

x = x′/L, w = w′/ρ, t = t′(EI/ml4)1/2,

P = P̄L2/EI, (2.2)

where ρ = (I/A)1/2 is the radius of gyration of the cross-
-section. As a result Eq. (2.1) can be written as follows:
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Assuming w(x, t) = W (t)ϕ(x) where ϕ(x) is the �rst
eigenmode of the beam [32] and applying the Galerkin
method, the equation of motion is obtained as follows:

d2W (t)

dt2
+ (α1 + Pα2)W (t) + α3W

3(t) = 0. (2.4)

Equation (2.3) is the di�erential equation of motion gov-
erning the nonlinear vibration of Euler�Bernoulli beams.
The center of the beam is subjected to the following ini-
tial conditions:

W (0) = ∆,
dW (0)

dt
= 0, (2.5)

where ∆ denotes the non-dimensional maximum ampli-
tude of oscillation and α1, α2 and α3 are as follows:
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Post-buckling load-de�ection relation for the problem can
be obtained from Eq. (2.4) as

P =
(
−α1 − α3W

2
)
/α2. (2.7)

Neglecting the contribution of W in Eq. (2.7), the buck-
ling load can be determined as

Pc = −α1/α2. (2.8)

3. Basic idea of max-min approach

We consider a generalized nonlinear oscillator in the
form [33]:

Ẅ +Wf(W ) = 0, W (0) = ∆, Ẇ (0) = 0, (3.1)

where f(W ) is a non-negative function of W . According
to the idea of the max-min method, we choose a trial-
-function in the form

W (t) = ∆ cos(ωt), (3.2)

where ω is the unknown frequency to be determined fur-
ther.
Observe that the square of frequency, ω2, is never less

than that in the solution

W1(t) = ∆ cos
(√

fmint
)
, (3.3)

of the following linear oscillator:

Ẅ +Wfmin = 0, W (0) = ∆, Ẇ (0) = 0, (3.4)

where fmin is the minimum value of the function f(W ).
In addition, ω2 never exceeds the square of frequency

of the solution

W1(t) = ∆ cos
(√

fmaxt
)
, (3.5)

of the following oscillator:

Ẅ +Wfmax = 0, W (0) = ∆, Ẇ (0) = 0, (3.6)

where fmax is the maximum value of the function f(W ).
Hence, it follows that
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1
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1
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According to the Chentian interpolation [33], we obtain

ω2 =
mfmin + nfmax

m+ n
, (3.8)

or

ω2 =
fmin + kfmax

1 + k
, (3.9)

where m and n are weighting factors, k = n/m. So the
solution of Eq. (3.1) can be expressed as

W (t) = ∆ cos

√
fmin + kfmax

1 + k
t. (3.10)

The value of k can be approximately determined by vari-
ous approximate methods [34, 35]. Among others, hereby
we use the residual method [34]. Substituting Eq. (3.10)
into Eq. (3.1) results in the following residual:

R(t; k) = −ω2A cos(ωt) + [A cos(ωt)] f (A cos(ωt)) ,

(3.11)

where ω =
√

fmin+kfmax

1+k .

If, by chance, Eq. (3.10) is the exact solution, then
R(t; k) is vanishing completely. Since our approach is
only an approximation to the exact solution, we set∫ T

0

R(t; k) cos

√
fmin + kfmax

1 + k
tdt = 0, (3.12)

where T = 2π/ω. Solving the above equation, we can
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easily obtain

k =
fmax − fmin

1−
√

A
π

∫ π
0

cos2(x)f (A cosx) dx
. (3.13)

Substituting the above equation into Eq. (3.10), we ob-
tain the approximate solution of Eq. (3.1).

4. Applications

We can re-write Eq. (2.4) in the following form:

Ẅ + (α1 + Pα2)W + α3W
3 = 0. (4.1)

We choose a trial-function in the form

W (t) = ∆ cos(ωt), (4.2)

where ω is the frequency to be determined.
By using the trial-function, the maximum and mini-

mum values of ω will be
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1
,
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1
. (4.3)

So we can write
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1
. (4.4)

According to the Chengtian inequality [34], we have

ω2 =
m (α1 + Pα2) + n (α1 + Pα2 + α3∆)

m+ n

= α1 + Pα2 + kα3∆ (4.5)

where m and n are weighting factors, k = n/m + n.
Therefore the frequency can be approximated as

ω =
√

(α1 + pα2) + kα3∆2. (4.6)

Its approximate solution reads

W (t) = ∆ cos
√

(α1 + pα2) + kα3∆2t. (4.7)

In view of the approximate solution, Eq. (4.6), we re-
-write Eq. (4.1) in the form

Ẅ + (α1 + Pα2 + kα3∆)W = (kα3∆)W − α3W
3.

(4.8)

If by any chance Eq. (4.6) is the exact solution, then the
right side of Eq. (4.8) vanishes completely. Considering
our approach which is just an approximation one, we set∫ T/4

0

[
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3
]

cosωtdt = 0, (4.9)

where T = 2π/ω. Solving the above equation, we can
easily obtain
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3

4
. (4.10)

Finally the frequency is obtained as

ω =
1

2

√
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Hence, the approximate solution can be readily obtained
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Nonlinear to linear frequency ratio is
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5. Results and discussions
To illustrate and verify the results obtained by the

MMA, some comparisons with the published data and
the exact solutions are presented. The exact frequency
ωExact for a dynamic system governed by Eq. (2.4) can
be derived, as shown in Eq. (5.1), as follows:

ωExact = (2π/4
√

2∆)

∫ π/2

0

dt sin(t)
/

(5.1)√
∆2 sin2(t) (∆2α3 cos2(t) + 2pα2 + 2α1 + ∆2α3).

To obtain numerical solution we must specify the pa-
rameter β = α3/(pα2 + α1). This parameter depends on
the type of structure and boundary condition considered.
The comparison of nonlinear to linear frequency ratio

(ωNL/ωL) with those reported by Azrar et al. [36] and the
exact one are tabulated in Tables I and II. The maximum
relative error of the analytical approaches is 2.004109%
for the �rst order analytical approximations as it is shown
in Tables I and II.

Fig. 2. Comparison of the approximate and exact solu-
tions for simply supported beam with ∆ = 1.5, α1 = 2,
α2 = 0, α3 = 6: (a) time history response, (b) phase
curve.

Fig. 3. Comparison of the approximate and exact solu-
tions for simply supported beam with ∆ = 0.6, α1 = 1,
α2 = 0, α3 = 3: (a) time history response, (b) phase
curve.

Fig. 4. Comparison of the approximate and exact so-
lutions for clamped-clamped beam with ∆ = 0.909,
α1 = 1, α2 = 0, α3 = 1.814: (a) time history response,
(b) phase curve.
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Fig. 5. Comparison of the approximate and exact so-
lutions for clamped-clamped beam with ∆ = 1.818,
α1 = 1, α2 = 0, α3 = 1.814: (a) time history response,
(b) phase curve.

Fig. 6. (a) In�uence of α3 on nonlinear to linear fre-
quency base on ∆ for α1 = 1, α2 = 0.5, p = 2. (b) In-
�uence of α1 on nonlinear to linear frequency base on
∆ for α2 = 1, α3 = 3, p = 3.

Figures 2 to 5 show the comparison of the analyti-

cal solution of W (t) based on time and dW (t)
dt based on

W (t) with the numerical solution for simply supported
beam and clamped-clamped beam. The time history dia-
grams ofW (t) start without an observable deviation with
A = 1.5 and 0.6. The motion of the system is a periodic
and the amplitude of vibration is a function of the initial
conditions.

Fig. 7. Sensitivity analysis of nonlinear to linear fre-
quency: (a) with respect to α3 and ∆, (b) with respect
to α1 and ∆.

The in�uences of α3 and α1 on nonlinear to linear fre-
quency base on ∆ are presented in Fig. 6. By increasing
α3 nonlinear to linear frequency is increased and the op-
posite result is obtained by increasing α1. The e�ects of
di�erent parameters of α3, ∆, and α1, ∆ on the nonlinear
to linear frequency are studied simultaneously in Fig. 7.

TABLE I

Comparison of nonlinear to linear frequency ratio (ωNL/ωL) for simply supported beam.

∆ β
Present study

(MMA)

Pade approximate

P{4,2}[36]

Exact

solution

Error [%]

(ωMMA − ωex)/ωex

0.2 3 1.0440 1.0439 1.0439 0.0142

0.6 3 1.3454 1.3397 1.3397 0.4224

1 3 1.8028 1.7847 1.7844 1.0287

1.5 3 2.4622 2.4262 2.4254 1.5178

2 3 3.1623 3.1085 3.1071 1.7761

2.5 3 3.8810 3.8099 3.8080 1.9190

3 3 4.6098 4.5217 4.5192 2.0041

It has illustrated that MMA is a very simple method
and quickly convergent and valid for a wide range of
vibration amplitudes and initial conditions. The accu-
racy of the results shows that the MMA can be poten-
tially used for the analysis of strongly nonlinear oscilla-
tion problems accurately.

6. Conclusions

In this paper, the MMA was employed to solve the
governing equations of buckled Euler�Bernoulli beams.

This approach prepares high accurate analytical solu-
tions, with respective errors of 2.004109% for the consid-
ered problem. We showed excellent agreement between
the solution given by MMA and the exact one. It was
indicated that MMA remains more e�ective and accu-
rate for solving highly nonlinear oscillators and possesses
clear advantages over other periodic solutions which are
based on a Fourier series, complicated numerical integra-
tion, or traditional perturbation methods (which require
the presence of a small parameter). Its excellent accu-



52 I. Pakar, M. Bayat

racy for the whole range of oscillation amplitude values
is one of the most signi�cant features of this approach.

MMA requires smaller computational e�ort and only the
one iteration leads to accurate solutions.

TABLE II

Comparison of nonlinear to linear frequency ratio (ωNL/ωL) for clamped-clamped beams.

∆ β
Present study

(MMA)

Pade approximate

P{4,2}[36]

Exact

solution

Error [%]

(ωMMA − ωex)/ωex

0.273 1.8142 1.0494 1.0492 1.0492 0.0177

0.545 1.8142 1.1852 1.1831 1.1831 0.1741

0.727 1.8142 1.3112 1.3064 1.3064 0.3688

0.909 1.8142 1.4574 1.4488 1.4488 0.5935

1.818 1.8142 2.3443 2.3114 2.3107 1.4539

3.635 1.8142 4.3569 4.2746 4.2723 1.9791
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