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We study the tests of the Bell�CHSH & CH inequalities by superposition of two coherent states (π/2 out of
phase), a class of non-Gaussian state, using photon parity and on/o� measurements. Large violations of the Bell-
-type inequalities have been observed theoretically con�rming the interpretation and validity of quantum mechanics
against the local-realistic theories.
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1. Introduction

Einstein et al. [1] realized that in many states, when
measuring either linear momentum or position of one of
the two particles, one can infer precisely either momen-
tum or position of the other. They advocated that if
the local realism is taken for granted, then quantum the-
ory is an incomplete description of the physical world.
Following this line, Bell demonstrated that a contradic-
tion arises between the EPR assumptions of realism and
locality and quantum physics and termed as Bell's theo-
rem. Quantum nonlocality con�rms the interpretation
and validity of quantum mechanics against the local-
-realistic theories by violations of the constraints on the
correlation between local measurement outcomes. Math-
ematical expression of such a constraint is known as Bell
inequality [2], of which many variants exist [3�5]. For
example, well known Clauser, Horne, Shimony, and Holt
(CHSH) inequality [3] and Clauser and Horne (CH) [4]
are used for the veri�cation of nonlocal correlations in a
two-dimensional Hilbert space. The Bell inequalities con-
cern measurements made by observers on pairs of parti-
cles that have interacted and then separated. According
to the quantum mechanics they are entangled, while local
realism would limit the correlation of subsequent mea-
surements of the particles. Nonlocal correlations play
crucial role for the device-independent versions of quan-
tum information protocols, such as cryptography, ran-
dom number generation, state estimation, and entangled
measurement certi�cation.
Quantum continuous variables (CV) [6] of light have

been successfully used to realize some of the standard
informational tasks traditionally based on qubits. Bell-
-inequality tests were performed by using qubits [7] which
satisfy the space-like separation between two local par-
ties. But, the di�culty of the detection loophole [8, 9]
demanded to look at other approaches for Bell-inequality
tests. Continuous variable (CV) states are of recent in-
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terest in order to suggest proposals for loophole-free Bell-
-inequality tests [10]. CV states have advantage over
discrete variable states due to the highly e�cient and
well experimentally developed method of detection for
CV states. Bell's inequality tests in the phase space have
been studied by Banaszek and Wódkiewicz (BW) [11] in
terms of the Wigner (Q) function based upon the photon
number parity (on/o�) measurements and the displace-
ment operation. The Wigner function approach supports
the Bell inequality version of CHSH [3], while the Q func-
tion supports the version of CH [4].

The Schrödinger cat states are superposition of two co-
herent states in free-traveling optical �elds, non-Gaussian
CV states, called [12], has been generated and detected
[13, 14], where the size of the states was reasonably large
for fundamental tests of quantum theory and quantum-
-information processing [15]. Application of superposed
coherent states in quantum computing is of interest be-
cause the encoding of qubits in coherent states (and the
resulting need for their superposition states, i.e., the cat
states) only requires relatively small coherent state am-
plitudes to be su�ciently distinguishable by homodyne
detection. Nonclassical features [16] of the Schrödinger
cat states are of great interest in the quantum informa-
tion processing applications. Recently, Zeng et al. [17]
discussed nonclassical features, such as sub-Poissonian
photon statistics, quadrature squeezing, and the nega-
tivity of the Wigner function, of the superposition of two
coherent states which are π/2 out of phase (we will ab-
breviate this state as SCSP for simplicity throughout the
paper),

|ψ〉 = (N/
√
2)
(
|α〉+ e iφ | iα〉

)
, (1)

with the normalization constant N2 = [1 +
exp(−|α|2) cos(φ + |α|2)]−1. Here, |α〉 is the coherent
state de�ned by the eigenvalue equation, â|α〉 = α|α〉.
In this paper, we study the quantum nonlocality test

for SCSP [7] by using photon parity and on/o� measure-
ments [18]. We study violations of Bell�CHSH and Bell�
CH inequalities for the SCSP state and observe strong
violations establishing the quantum nonlocality.
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2. Violations of Bell�CHSH inequality
with photon parity measurement scheme

The Wigner function [19] o�ers the appealing possibil-
ity of being able to describe quantum phenomena using
the classical-like concept of a phase space distribution
function. The Wigner function of a quantum state de-
scribed by the density operator, ρ̂, is

W (α) = Tr

(
ρ̂

∫
exp(αξ∗ − α∗ξ)D(ξ)π−1d2ξ

)
. (2)

Here the displacement operator [20], D̂(ξ), is de�ned as

D̂(ξ) = exp(ξâ† − ξ∗â). The Wigner function W (α) is
real-valued, uniformly continuous, and square-integrable
function of α for all density operators ρ̂. In a coher-
ent state representation, the Wigner function can be
written as W (α) = (2/π)〈ψ|Π̂ (α)|ψ〉, where Π̂ (α) =

D̂(α)Π̂ D̂†(α) is the parity operator Π̂ = (−1)â†â, shifted
in the phase space by α, with the help of displacement
operator, D̂(α). The displacement operator can be exper-
imentally realizable by a beam splitter with the transmis-
sion coe�cient close to one and a strong coherent state
being injected into the other input port [11]. Correlated
parity measurement [11] can be described by the follow-
ing positive operator-valued measure operators [21]:

Π̂+(β) = D̂(β)

∞∑
k=0

|2k〉 〈2k| D̂†(β), (3)

Π̂−(β) = D̂(β)

∞∑
k=0

|2k + 1〉 〈2k + 1| D̂†(β). (4)

Corresponding operator for the correlated measurement
of the parity on modes �a� and �b� of two parties, say
Alice and Bob, may be de�ned as

Π̂ (β, γ) =
[
Π̂ (+)

a (β)− Π̂ (−)
a (β)

]
⊗
[
Π̂

(+)
b (γ)− Π̂

(−)
b (γ)

]
. (5)

The outcome of the measurements is either +1 or −1
(i.e., dichotomic). Then the Bell�CHSH inequality is

B ≡ |BCHSH| =
∣∣∣〈Π̂ (β, γ) + Π̂ (β, γ′) + Π̂ (β′, γ)

− Π̂ (β′, γ′)
〉∣∣∣ ≤ 2, (6)

where we call B ≡ |BCHSH|, the Bell�CHSH function.
The two-mode Wigner function at a given phase point de-
scribed by β and γ is W (β, γ) = 4

π2 Tr[ρ̂Π̂ (β, γ)], where
ρ̂ is the density operator of the �eld. Then the Wigner
representation of the Bell�CHSH inequality is

B =
π2

4

∣∣〈W (0, 0) +W (β, 0) +W (0, γ)

−W (β, γ)
〉∣∣ ≤ 2. (7)

The Cirel'son bound is B = |BCHSH| ≤ 2
√
2 in the gener-

alized BW formalism. The Wigner function of the state
SCSP, |ψ〉, is [17]:

W (β) = (N2/2)
[
W|α〉(β) +W| iα〉(β) +Wint(β)

]
, (8)

where

W|α〉(β) =
2

π
exp

(
−2(|α|2 + |β|2 − α∗β − αβ∗)

)
, (9)

W| iα〉(β) =
2

π
exp

(
−2(|α|2 + |β|2 + iα∗β − iαβ∗)

)
,

(10)

Wint(β) =
4

π
cos(φ− |α|2 +∆)

× exp
(
−|α|2 − 2|β|2 +∆

)
, (11)

and

∆ = α∗β + αβ∗ − iα∗β + iαβ∗. (12)

We can visualize the nonclassical nature [19] of the state
|ψ〉 in terms of the negative regions of its Wigner function
(Fig. 1). In order to make the Bell�CHSH inequality test,

Fig. 1. Variation of Wigner function, W (β), of SCSP
with φ and (θα − θβ) for J = 1.0.

the single-mode SCSP state |ψ〉 with the Wigner function
given by Eq. (8) is divided by a beam splitter to gener-
ate a two-mode state shared by distant parties, say Alice
and Bob. The beam splitter operator acting on modes â

and b̂ is represented as

B̂(θ) = exp
(
θ(â†b̂− âb̂†)/2

)
, (13)

where the beam splitter re�ectivity and transmittivity
are de�ned as R = sin2(θ/2) and T = 1−R, respectively.
When the state |ψ〉 passes through a 50:50 beam splitter,
the Wigner function of the resulting state is

Wout(β, γ) =W|ψ〉

(
β − γ√

2

)
W|0〉

(
β + γ√

2

)
, (14)

where W|0〉(γ) is the Wigner function of the vacuum

W|0〉(γ) =
2

π
exp

(
−2|γ|2

)
. (15)

The two-mode state Wout(β, γ), Eq. (14), can be used to
calculate the Bell�CHSH function given by Eq. (7). We
can �nd several situations when the Bell�CHSH inequal-
ity, Eq. (7), is violated by the state |ψ〉. For example,
let us consider, for simplicity, α ≡ |α|e iθα , β ≡ |β|e iθβ ,
γ ≡ |γ|e iθγ , and |α| = |β| = |γ| ≡

√
J . Then, e.g., for

θα = π/8, θβ = π/2, J = 0.2, we plot variation of the
Bell�CHSH function (B) with φ and θγ (see Fig. 2) and
we observe strong violations of the Bell�CHSH inequal-
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Fig. 2. Variation of Bell�CHSH function (B) with φ
and θγ for θα = π/8, θβ = π/2, J = 0.2.

ity, Eq. (7), for di�erent values of φ and θγ . The Cirel'son

bound, B = |BCHSH| ≤ 2
√
2, is also followed.

3. Violations of Bell�CH inequality
with the on/o� measurement scheme

According to Banaszek and Wódkiewicz, the Husimi�
Kano Q-function [22] can be used for test of the Bell�
CH inequality violation using photon presence measure-
ments [11]. It is important to be noted that this method
is more practical for an experimental Bell inequality test
using the currently available photodetectors. The Q
function for a two-mode state ρ̂ab is de�ned as [22]:

Qab(β, γ) = b 〈γ|a 〈β| ρ̂ab |β〉a |γ〉b /π
2, (16)

where |β〉 and |γ〉 are coherent states of amplitudes β
and γ, respectively. Then, the Bell�CH function in terms
of Q-function is

BCH =
〈
B̂CH

〉
= π2

[
Qab(β, γ) +Qab(β

′, γ) (17)

+Qab(β, γ
′)−Qab(β

′, γ′)
]
− π [Qa(β) +Qb(γ)] ,

where Qa(β) and Qb(γ) are marginal Q functions in the
corresponding modes. For local theories, the Bell�CH
inequality [4], −1 ≤ BCH ≤ 0, must be satis�ed and,
therefore, any violation establishes the nonlocal theory.
The Q-function for the SCSP state |ψ〉 can be written as

Q|ψ〉(β) =
N2

2π
exp

(
−|α|2 − |β|2

)
×
[
exp(α∗β + αβ∗) + exp(iα∗β − iαβ∗)

+ exp(αβ∗ − i(ϕ+ α∗β))

+ exp (α∗β + i(ϕ+ αβ∗))
]
. (18)

Then, by using the method similar to that for the case
of Eq. (14), with

Q|0〉(γ) =
1

π
exp(−|γ|2)

and

Qab(β, γ) = Q|ψ〉

(
β − γ√

2

)
Q|0〉

(
β + γ√

2

)
,

we can get the Q-function of the two-mode state shared
by two parties, say Alice (mode �a�) and Bob (mode �b�)
as

Qab(β, γ) =
N2

ab

2π2
exp(−3J)

×
[
exp

(√
2 J cos(θα − θβ)− cos(θα − θγ)

)
+ exp

(
−
√
2 J sin(θα − θβ)− sin(θα − θγ)

)
+ 2 cos(ϕ+

√
2JX) exp(

√
2JX)

]
, (19)

where

N2
ab =

[
1 + exp

(
−J 1− cos(θβ − θγ)

)
× cos

(
ϕ+ J 1− cos(θβ − θγ)

) ]−1
, (20)

X =

[
sin

(
θα −

1

2
θβ + θγ

)
+ cos

(
θα −

1

2
θβ + θγ

)]
× sin

(
1

2
θβ − θγ

)
, (21)

Q|ψ〉(β) =
N2

2π
exp(−2J)

[
exp (2J cos(θα − θβ))

+ exp (−2J sin(θα − θβ))

+ 2 exp
(
J cos(θα − θβ)− sin(θα − θβ)

)
× cos

(
ϕ+ J cos(θα − θβ)− sin(θα − θβ)

) ]
, (22)

and for making simplicity of calculations, we denoted
α = |α| exp(iθα), β′ = |β′| exp(iθβ′), γ′ = |γ′| exp(iθγ′),
β = |β| exp(iθβ), γ = |γ| exp(iθγ), |α| = |β| = |γ| =
|β′| = |γ′| =

√
J . Using Eqs. (19)�(22) in Eq. (17), we

can �nd several situations for violation of the Bell�CH
inequality −1 ≤ BCH ≤ 0. For example, let us take
θβ − θγ′ = θβ′ − θγ = θβ′ − θγ′ = θβ′ − θγ′ = π, J = 1.5
and we can see the variation of the Bell�CH function (see
Fig. 3) with (θα−θβ) and φ. We can see the strong viola-
tions of the CH inequality for di�erent values of (θα−θβ)
and φ.

Fig. 3. Variation of Bell�CH function with (θα − θβ)
and φ for θβ − θγ′ = θβ′ − θγ = π, J = 1.5.
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4. Concluding remarks

We discussed about the violation of the Bell�CHSH
and Bell�CH inequalities using photon parity and on/o�
measurement schemes by the superposition of two coher-
ent states which are π/2 out of phase (SCSP). Photon
on/o� measurements for a Bell-inequality test is more
practical than that of photon number parity measure-
ments but with the too large average photon number of
the state under consideration, because of getting a negli-
gible �o�' result, Bell violations cannot be observed using
photon on/o� measurements.
This study may play an important role in usefulness of

superposed coherent states for the quantum information
processing applications. A key requirement of quantum
information processing with cat states is the generation of
cat states in free propagating optical �elds. The state |ψ〉
can be generated by using the dispersive atom-�eld in-
teractions [23]. A recent experimental progress [24] could
be directly improved by the cat-ampli�cation scheme to
generate a cat state of a larger amplitude (α ≈ 2) and
higher �delity within reach of current technology.
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