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1. Introduction

Einstein et al. [1] realized that in many states, when
measuring either linear momentum or position of one of
the two particles, one can infer precisely either momen-
tum or position of the other. They advocated that if
the local realism is taken for granted, then quantum the-
ory is an incomplete description of the physical world.
Following this line, Bell demonstrated that a contradic-
tion arises between the EPR assumptions of realism and
locality and quantum physics and termed as Bell’s theo-
rem. Quantum nonlocality confirms the interpretation
and validity of quantum mechanics against the local-
-realistic theories by violations of the constraints on the
correlation between local measurement outcomes. Math-
ematical expression of such a constraint is known as Bell
inequality [2], of which many variants exist [3-5]. For
example, well known Clauser, Horne, Shimony, and Holt
(CHSH) inequality [3] and Clauser and Horne (CH) [4]
are used for the verification of nonlocal correlations in a
two-dimensional Hilbert space. The Bell inequalities con-
cern measurements made by observers on pairs of parti-
cles that have interacted and then separated. According
to the quantum mechanics they are entangled, while local
realism would limit the correlation of subsequent mea-
surements of the particles. Nonlocal correlations play
crucial role for the device-independent versions of quan-
tum information protocols, such as cryptography, ran-
dom number generation, state estimation, and entangled
measurement certification.

Quantum continuous variables (CV) [6] of light have
been successfully used to realize some of the standard
informational tasks traditionally based on qubits. Bell-
-inequality tests were performed by using qubits [7] which
satisfy the space-like separation between two local par-
ties. But, the difficulty of the detection loophole [8, 9]
demanded to look at other approaches for Bell-inequality
tests. Continuous variable (CV) states are of recent in-
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terest in order to suggest proposals for loophole-free Bell-
-inequality tests [10]. CV states have advantage over
discrete variable states due to the highly efficient and
well experimentally developed method of detection for
CV states. Bell’s inequality tests in the phase space have
been studied by Banaszek and Wodkiewicz (BW) [11] in
terms of the Wigner (@) function based upon the photon
number parity (on/off) measurements and the displace-
ment operation. The Wigner function approach supports
the Bell inequality version of CHSH [3], while the @ func-
tion supports the version of CH [4].

The Schrodinger cat states are superposition of two co-
herent states in free-traveling optical fields, non-Gaussian
CV states, called [12], has been generated and detected
[13, 14], where the size of the states was reasonably large
for fundamental tests of quantum theory and quantum-
-information processing [15]. Application of superposed
coherent states in quantum computing is of interest be-
cause the encoding of qubits in coherent states (and the
resulting need for their superposition states, i.e., the cat
states) only requires relatively small coherent state am-
plitudes to be sufficiently distinguishable by homodyne
detection. Nonclassical features [16] of the Schrédinger
cat states are of great interest in the quantum informa-
tion processing applications. Recently, Zeng et al. [17]
discussed nonclassical features, such as sub-Poissonian
photon statistics, quadrature squeezing, and the nega-
tivity of the Wigner function, of the superposition of two
coherent states which are 7/2 out of phase (we will ab-
breviate this state as SCSP for simplicity throughout the

paper),

[¥) = (N/V2) (Ja) + e’ i),
with the normalization constant N? n +
exp(—|al?) cos(¢ + |a|?)]7. Here, |a) is the coherent
state defined by the eigenvalue equation, d|a) = ala).

(1)

In this paper, we study the quantum nonlocality test
for SCSP [7] by using photon parity and on/off measure-
ments [18]. We study violations of Bell-CHSH and Bell-
CH inequalities for the SCSP state and observe strong
violations establishing the quantum nonlocality.
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2. Violations of Bell-CHSH inequality
with photon parity measurement scheme

The Wigner function [19] offers the appealing possibil-
ity of being able to describe quantum phenomena using
the classical-like concept of a phase space distribution
function. The Wigner function of a quantum state de-
scribed by the density operator, p, is

W(a)zTr( [ewtag —aep <«s>7r—1d25). 2)

Here the displacement operator [20], D(¢), is defined as
D(¢) = exp(¢at — €*a). The Wigner function W (a) is
real-valued, uniformly continuous, and square-integrable
function of « for all density operators p. In a coher-
ent state representation, the Wigner function can be
written as W(a) = (2/7) |l (« )W) where II(a) =
D(a)II D' () is the parity operator II = (—1 )“T“ shifted
in the phase space by «, with the help of displacement
operator, D(«). The displacement operator can be exper-
imentally realizable by a beam splitter with the transmis-
sion coefficient close to one and a strong coherent state
being injected into the other input port [11]. Correlated
parity measurement [11] can be described by the follow-
ing positive operator—valued measure operators [21]:

(g = Z |2k) (2k| DT(B), (3)
k=0

I(8) = D(B))_ 12k +1) (2k + 1| DY(8). (4)
k=0

Corresponding operator for the correlated measurement

of the parity on modes “a” and “b” of two parties, say

Alice and Bob, may be defined as
11(8,7) = [I(8) - 11 (8)]

N .
@ [ () - 7). (5)

The outcome of the measurements is either +1 or —1

(i.e., dichotomic). Then the Bell-CHSH inequality is

B = [Bonsul = [(11(8,7) + 11(8,7') + [1(8', )

UCROES? (©)
where we call B = |Bcusnl|, the Bell-CHSH function.
The two-mode Wigner function at a given phase point de-
scribed by 3 and v is W(B,7) = 2 Tr[pII(5,7)], where
p is the density operator of the field. Then the Wigner
representation of the Bell-CHSH inequality is

W(0,v)

-W(B,7))| <2 (7)

The Cirel’son bound is B = |Bcpsu| < 21/2 in the gener-

alized BW formalism. The Wigner function of the state
SCSP, |¢), is [17]:

W(B) = (N?/2) [Wia)(B) + Wjiay(B) + Wine(B)] , (8)

where

B %2|<W(0,0) +W(B,0) +

Wiay (8) = = exp (<2(laf? +167 — "5 — ")) , (9)

Wiiay(B) = %exp (—2(\a|2 + \ﬁ|2 +ia*B — iaﬁ*)) ,
(10)
Wint(B) = %cos(d) - |oz\2 + A)
x exp (—|a|? — 2|82 + 4), (11)
and
A=a"B+af* —ia"B+ iaf". (12)

We can visualize the nonclassical nature [19] of the state
|1} in terms of the negative regions of its Wigner function
(Fig. 1). In order to make the Bell-CHSH inequality test,
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Fig. 1. Variation of Wigner function, W (), of SCSP
with ¢ and (6, — 63) for J = 1.0.

the single-mode SCSP state |¢) with the Wigner function
given by Eq. (8) is divided by a beam splitter to gener-
ate a two-mode state shared by distant parties, say Alice
and Bob. The beam splitter operator acting on modes a
and b is represented as

B(6) = exp (6(a'h — ab')/2), (13)
where the beam splitter reflectivity and transmittivity
are defined as R = sin?(0/2) and T = 1 — R, respectively.
When the state [¢)) passes through a 50:50 beam splitter,
the Wigner function of the resulting state is

Woue2) = Wiy (250 Wi (252) .

where W)gy () is the Wigner function of the vacuum

Wi () = = exp (~2h1?) (15)
The two-mode state Wo,u1(8,7), Eq. (14), can be used to
calculate the Bell-CHSH function given by Eq. (7). We
can find several situations when the Bell-CHSH inequal-
ity, Eq. (7), is violated by the state |¢)). For example,
let us consider, for simplicity, a = |a|el?, g = |3|e!%,
v = |y|e!?, and |a| = |8] = |y| = V/J. Then, e.g., for
0o = /8, 03 = w/2, J = 0.2, we plot variation of the
Bell-CHSH function (B) with ¢ and 6, (see Fig. 2) and
we observe strong violations of the Bell-CHSH inequal-
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Fig. 2. Variation of Bell-CHSH function (B) with ¢
and 0 for 0, = 7/8, 0 = /2, J =0.2.

ity, Eq. (7), for different values of ¢ and 6.,. The Cirel’son
bound, B = |Bcusu| < 2v/2, is also followed.

3. Violations of Bell-CH inequality

with the on/off measurement scheme
According to Banaszek and Wodkiewicz, the Husimi-
Kano @Q-function [22] can be used for test of the Bell-
CH inequality violation using photon presence measure-
ments [11]. It is important to be noted that this method
is more practical for an experimental Bell inequality test
using the currently available photodetectors. The @

function for a two-mode state g1, is defined as [22]:

Qab(8,7) = b (], (Bl pab 18), 1)y, /7%, (16)

where |8) and |y) are coherent states of amplitudes g
and ~, respectively. Then, the Bell-CH function in terms
of QQ-function is

Beu = <BCH> =m2[Qan(8,7) + Qan(5',7) (17)

+ Qab(ﬁ7 ’}/) - Qab(6/7 ’}/):I -7 [Qa(ﬁ) + Qb('Y)] 5

where Q.(8) and Qy () are marginal @ functions in the
corresponding modes. For local theories, the Bell-CH
inequality [4], —1 < Bcn < 0, must be satisfied and,
therefore, any violation establishes the nonlocal theory.
The Q-function for the SCSP state |¢) can be written as

N2
Qur(8) = 2 exp (<ol ~15P)
B+ af*) +exp(ia™f — iaf")
+exp(af” —i(p+a*B))

+exp (a8 + (e +aB") . (18)
Then, by using the method similar to that for the case

exp(a®

of Eq. (14), with
1
Qloy(v) = *EXP( 71?)
and

Qan(B,7) = Q) (é;;) Qo) (%) ;

we can get the Q-function of the two-mode state shared
by two parties, say Alice (mode “a”) and Bob (mode “b”)

as
2

Qab(ﬂv P)/) = ) ag (73‘])

X [exp (\/iJcos(Ha —03) — cos(bn — GW)>
+ exp (—\/iJsin(Ha —03) —sin(f, — 97))

+ 2cos(p + V2JX) exp(\fQJX)} , (19)

where
N2 = [1 +exp (—JW)

-1
X coS ((p +J1—cos(fs — HW)) } , (20)
. 1 1
X = [sin Ha—§95+97 + cos Ha—§9g+97
ol
X sin (295 - 97) , (21)

2

Q) (B) = .72\77 exp(—2J) [exp (2J cos(bn — 63))
+ exp (—2J sin(f, — 63))

+ 2exp (J cos(0, — 03) —sin(f, — 9@))

X CoS (go + Jcos(f, — 05) — sin(f, — 05)> ], (22)
and for making simplicity of calculations, we denoted
o = [a] exp(ifa), B = |8 exp(i0s), 7/ = [y'| exp(ify),

— Blexp(i03), 7 = Iylexp(its), lal = 18] = Iy =
|8'] = |9'| = v/J. Using Eqgs. (19)-(22) in Eq. (17), we
can find several situations for violation of the Bell-CH
inequality —1 < Beg < 0. For example, let us take
95—97/ :95/—%:6‘@—67/ 295/—97/ = T, J=15
and we can see the variation of the Bell-CH function (see
Fig. 3) with (6, —63) and ¢. We can see the strong viola-
tions of the CH inequality for different values of (8, —63)
and ¢.

.lIII T,
'55//////// 7

B-CH

iy
2 "'II/ ity II

':
"l

Fig. 3. Variation of Bell-CH function with (6, — 63)
and ¢ for 03 — 0, =03 — 0, =m, J=1.5.
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4. Concluding remarks

We discussed about the violation of the Bell-CHSH
and Bell-CH inequalities using photon parity and on/off
measurement schemes by the superposition of two coher-
ent states which are /2 out of phase (SCSP). Photon
on/off measurements for a Bell-inequality test is more
practical than that of photon number parity measure-
ments but with the too large average photon number of
the state under consideration, because of getting a negli-
gible “off’ result, Bell violations cannot be observed using
photon on/off measurements.

This study may play an important role in usefulness of
superposed coherent states for the quantum information
processing applications. A key requirement of quantum
information processing with cat states is the generation of
cat states in free propagating optical fields. The state |))
can be generated by using the dispersive atom-field in-
teractions [23]. A recent experimental progress [24] could
be directly improved by the cat-amplification scheme to
generate a cat state of a larger amplitude (o =~ 2) and
higher fidelity within reach of current technology.
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