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Nonlinear models occur in many areas of applied physical sciences. This paper presents the �rst integral
method to carry out the integration of Schrödinger-type equations in terms of traveling wave solutions. Through
the established �rst integrals, exact traveling wave solutions are obtained under some parameter conditions.
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1. Introduction

The physical models that evolve over time, commonly
referred to as evolution equations, have been a crucial
component of the mathematical description of complex
phenomena. Nonlinear evolution equations (NEEs) arise
in a vast assortment of �elds, ranging from the physical
sciences including thermodynamics, soil mechanics, civil
engineering, and non-Newtonian �uids to the natural sci-
ences including population ecology, infectious disease epi-
demiology, and neural networks, etc. Thus, throughout
the past few decades, a particular attention has been
given to the problem of �nding exact solutions of NEEs.
By virtue of these solutions, one may give better insight
into the physical aspects of the nonlinear models stud-
ied. Among the others, certain special form solutions of
NEEs may depend only on a single combination of the
so-called traveling wave variables because such equations
are often described by wave phenomena.
Not all equations are solvable. To carry out the in-

tegration of NEEs in terms of analytic solutions, a con-
siderable number of analytic methods have been success-
fully established and developed on this direction; just to
mention a few, the Painleve expansion method [1], in-
verse scattering method [2], Hirota's bilinear method [3],
transformed rational function method [4], symmetry
method [5], tanh function method [6], homogeneous
balance method [7], F-expansion method [8], (G′/G)-
-expansion method [9], exp-function method [10], homo-
topy perturbation method [11], the solitary wave ansatz
method [12], further improved F-expansion method [13],
multiple exp-function method [14], Adomian�Pade tech-
nique [15], etc.
More lately, the superposition principle was success-

fully used to �nd exponential traveling wave solutions to
the Hirota bilinear equations [16]. But, it is usually hard
and time consuming to tackle various kinds of nonlin-
ear problems via the well-known traditional approaches
because they are usually restricted and cannot be im-
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plemented to numerous realistic mathematical/physical
scenarios.
Recently, by means of the ring theory of commuta-

tive algebra, Feng et al. [17�19] developed an e�ective
method which is currently recognized as the �rst inte-
gral method (or the algebraic curve method) to ana-
lyze NEEs in terms of exact and explicit solutions. The
method has been shown to be a useful tool for solving
some nonlinear problems (see, for instance, [20�27] and
the references therein). The core idea of the �rst integral
method, through the division theorem for two variables
in the complex domain, is to establish a polynomial �rst
integral (with polynomial coe�cients) of an explicit form
to an autonomous planar system which is equivalent to
the equation considered. Taking the derived �rst integral
into account, the method may provide a class of traveling
wave solutions in a straightforward manner. In addition,
it transforms the problem into a simple algebraic compu-
tation.
On the other hand, extending some innovative methods

to NEEs for traveling wave solutions seems interesting
and important research problem. Hence, we �nd that
substantial work still has to be done in order for the
�rst integral method be well established because every
nonlinear equation has its own physically distinct and
signi�cant rich structure deserving to be explored further.
The aim of the present paper is to introduce new ap-

plications of the �rst integral method by focusing our
attention on two special types of the Schrödinger equa-
tions which are of great interest in plasma physics, wave
propagation in nonlinear optical �bers, etc. To this end,
we organize our paper as follows: in the next section, we
describe the method in brief. In Sects. 3 and 4, we ana-
lyze our equations for traveling wave solutions. Finally,
we state a conclusion in Sect. 5.

2. The �rst integral method

Suppose that we are given a partial di�erential equa-
tion for a function u(x, t) in the form

P (u, ut, ux, utt, utx, uxx, . . .) = 0, (1)

where P is a polynomial in its arguments while subscripts
denote partial derivatives. Through the wave transfor-
mation u(x, t) = U(ξ), ξ = kx−wt+ ξ0, where k, w, and

(16)
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ξ0 are arbitrary constants, Eq. (1) can be converted into
an ordinary di�erential equation (ODE) of the form

P (U,−wU ′, kU ′, w2U ′′,−kwU ′′, k2U ′′, . . .) = 0, (2)

where U = U(ξ) and the primes denote ordinary deriva-
tives with respect to ξ. Introducing the new variables

X(ξ) = U(ξ), Y (ξ) =
dU(ξ)

dξ
, (3)

we assume that Eq. (2) can be reduced to a planar au-
tonomous system of the form

dX(ξ)

dξ
= Y (ξ),

dY (ξ)

dξ
= Q (X(ξ), Y (ξ)) . (4)

Solving a planar autonomous system of ODEs such as
(4) directly is a challenging and di�cult task in general.
Thus, relying on the qualitative theory of ODEs [28], if
one can derive a single �rst integral for the system (4),
then one may be able to reduce Eq. (2) to a �rst-order
integrable ODE. Accordingly, a class of traveling wave so-
lutions can be obtained by solving this �rst-order ODE.
However, there is no a systematic approach which can
provide us a way of �nding the �rst integrals of Eq. (4),
nor is there a logical way for telling us what these �rst
integrals are. On the other hand, looking for the �rst
integrals of ODEs is one of the most important problems
because they permit us to get the general solution of a
nonlinear di�erential equation in the form of quadratures.
The division theorem for two variables in the complex do-
main C [18, 29, 30] is stated as follows:
Division theorem. Suppose that P (w, z) andQ(w, z)

are polynomials in C[w, z] and P (w, z) is irreducible in
C[w, z]. If Q(w, z) vanishes at all zero points of P (w, z),
then there exists a polynomial G(w, z) in C[w, z] such
that Q(w, z) = P (w, z)G(w, z).
Remark 1: We note that the division theorem is given

in the complex domain C. The real �eld R is a sub�eld
of the complex �eld C, and every algebraic curve is natu-
rally non-degenerate in C. For a given equation in R we
can always extend it to C. If the extended equation has
an algebraic curve solution in C, then the intersection
of the manifold of this solution and the real plane must
be the algebraic curve solution of the original equation
in R. If the extended equation has no an algebraic curve
solution in C, then the original equation has no algebraic
curve solution in R either. Hence, for a given equation
in R, we can use the division theorem in R [18].

3. The generalized nonlinear

Schrödinger equation

First, let us consider the generalized nonlinear
Schrödinger equation [31] which reads

ut − iuxx − γ1ux − γ2
(
|u|2u

)
x
− γ3

(
|u|2
)
x
u

− i
(
γ4|u|2 + γ5|u|4

)
u = 0, (5)

where i is the imaginary unit, while γj 's are arbitrary real
numbers. Equation (5) appears in quantum mechanics.
Now, we assume that Eq. (5) admits a solution of the

form

u(x, t) = ϕ(ξ) exp (i (ψ(ξ)− θt)) ,

ξ = kx− wt+ ξ0, (6)

where ϕ and ψ are undetermined real functions of the
single variable ξ, while θ, k, and w are arbitrary con-
stants to be speci�ed, and ξ0 is an arbitrary phase shift.
Then, setting

ψ′(ξ) =
w + kγ1
2k2

+
3γ2 + 2γ3

4k
ϕ2(ξ),

ξ = kx− wt+ ξ0, (7)

and substituting (6) into Eq. (5) yield

ϕ′′(ξ) +
w2 + 4k2θ + kγ1 (2w + kγ1)

4k4
ϕ(ξ)

+
(w + kγ1) γ2 + 2kγ4

2k3
ϕ3(ξ)

+
(γ2 − 2γ3) (3γ2 + 2γ3) + 16γ5

16k2
ϕ5(ξ) = 0,

ξ = kx− wt+ ξ0, (8)

where the primes denote derivatives with respect to ξ.
Letting z = ϕ and y = ϕ′, Eq. (8) can be written as the
plane autonomous system{

dz
dξ = y,
dy
dξ = az + bz3 + cz5,

(9)

where

a = −w
2 + 4k2θ + kγ1(2w + kγ1)

4k4
,

b = − (w + kγ1)γ2 + 2kγ4
2k3

,

c = − (γ2 − 2γ3)(3γ2 + 2γ3) + 16γ5
16k2

.

Now, suppose that z = z(ξ) and y = y(ξ) are non-
trivial solutions of (9). Also, assume that q(z, y) =∑m
i=0Ai(z)y

i is an irreducible polynomial in the com-
plex domain C such that

q(z(ξ), y(ξ)) =

m∑
i=0

Ai(z)y
i = 0, (10)

where the polynomials Ai(z) (i = 0, 1, . . . ,m) are rel-
atively prime in C with Am(z) ≡ 0. Equation (10) is
called a �rst integral of Eq. (9). We note that dq/dξ is
a polynomial in z and y. Thus, q(z(ξ), y(ξ)) = 0 implies
that dq/dξ = 0. Then, by the division theorem, there
exists a polynomial B(z)+C(z)y in the complex domain
C such that

dq

dξ
=
∂q

∂z

dz

dξ
+
∂q

∂y

dy

dξ

=
[
B(z) + C(z)y

] [ m∑
i=0

Ai(z)y
i

]
. (11)

We consider the case m = 2 of (10). Hence, taking
Eqs. (9) and (11) into account, we get
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2∑
i=0

[
A′i(z)y

i+1
]
+

2∑
i=0

[
iAi(z)y

i−1 (az + bz3 + cz5
)]

= [B(z) + C(z)y]

[
2∑
i=0

Ai(z)y
i

]
. (12)

Equating the coe�cients of yi (0 ≤ i ≤ 3) in Eq. (12)
leads to the system

y3: A′2(z) = C(z)A2(z), (13)

y2: A′1(z) = B(z)A2(z) + C(z)A1(z), (14)

y1: A′0(z) = B(z)A1(z)− 2
(
az + bz3 + cz5

)
A2(z)

+ C(z)A0(z), (15)

y0: B(z)A0(z) =
(
az + bz3 + cz5

)
A1(z). (16)

From Eq. (13), we obtain A2(z) = c0 exp(
∫
C(z)dz),

where c0 is an integration constant. Since A2(z) and
C(z) are polynomials, we deduce that C(z) = 0 and
A2(z) must be a constant. For simplicity, we can take
A2(z) = 1. Then, Eqs. (14) and (15) reduce to the fol-
lowing equations:

A′1(z) = B(z), (17)

A′0(z) = B(z)A1(z)− 2
(
az + bz3 + cz5

)
. (18)

At this stage, it becomes obligatory to make the following
case analysis:

Case 1. degA1(z) = 0.

In this case, from (16) and (17), we conclude that
A1(z) ≡ 0. Then, (18) gives

A0(z) = −
c

3
z6 − b

2
z4 − az2, (19)

where we set the integration constant to zero for simplic-
ity. Hence, Eq. (10) becomes

− c
3
z6 − b

2
z4 − az2 + y2 = 0, (20)

which is a �rst integral of Eq. (9). Solving Eq. (20) for y,
we get

y = ±
√
c

3
z6 +

b

2
z4 + az2. (21)

Here and henceforth, the signs (±) or (∓) are ordered
vertically. Combining the �rst equation of (9) with
Eq. (21), solving the resulting equation by a quadrature,
and changing to the original variables, we obtain

Observation 1. Equation (8) admits an exact solu-
tion of the form

ϕ(ξ) = ±
(
48a
/(√

6
(
6b2 − 32ac+ 1

)
cosh

(
2
√
aξ
)

+
√
6
(
6b2 − 32ac− 1

)
sinh

(
2
√
aξ
)
− 12b

))1/2
, (22)

where ξ = kx − wt + ξ0, a, b, and c are as in (9), while
all involved constants remain arbitrary; Eq. (5) admits a
traveling wave solution of the form

u(x, t) = ϕ(ξ) exp (i (ψ(ξ)− θt)) ,

where ϕ(ξ) is described by (22), and ψ(ξ) is de�ned as
in (7).
Case 2. degA1(z) = 1 or degA1(z) = 2.

In this case, we end up with the same �rst integral

as (20). We omit to present the details for brevity.

Case 3. degA1(z) = 3.

In this case, from (16) and (17), we conclude that
degB(z) = 2 and degA0(z) = 6. Assuming A1(z) =
a3z

3 + a2z
2 + a1z+ a0 (a3 6= 0) and B(z) = b2z

2 + b1z+
b0 (b2 6= 0) in (17), we get b2 = 3a3, b1 = 2a2, and
b0 = a1. Substituting A1(z) and B(z) into Eq. (18) and
integrating the resulting equation leads to

A0(z) =
3a23 − 2c

6
z6 + a2a3z

5 +
a22 + 2a1a3 − b

2
z4

+ (a1a2 + a0a3) z
3 +

a21 + 2a0a2 − 2a

2
z2

+ a0a1z + d, (23)

where d denotes an integration constant. Then, substi-
tuting A0(z), A1(z), and B(z) into Eq. (16), equating
the coe�cients of zi (0 ≤ i ≤ 8) to zero, and solving the
resulting system of nonlinear algebraic equations simul-
taneously, we get the relations

d = 0, a3 = −2
√
c

3
, a1 = ∓2

√
a,

b = ±4
√
ac

3
, a0 = 0, a2 = 0, (24)

d = 0, a3 = 2

√
c

3
, a1 = ∓2

√
a,

b = ∓4
√
ac

3
, a0 = 0, a2 = 0, (25)

where all other constants remain arbitrary. Hence,
Eq. (10) becomes

y2 +

(
−2
√
c

3
z3 ∓ 2

√
az

)
y + az2

± 2

√
ac

3
z4 +

c

3
z6 = 0, (26)

y2 +

(
2

√
c

3
z3 ∓ 2

√
az

)
y + az2

∓ 2

√
ac

3
z4 +

c

3
z6 = 0, (27)

which are �rst integrals of Eq. (9). Solving Eqs. (26) and
(27) for y, respectively, we get

y =

√
c

3
z3 ±

√
az, (28)

y = −
√
c

3
z3 ±

√
az. (29)

Combining the �rst equation of (9) with Eqs. (28)
and (29), solving the resulting equations by quadratures,
and changing to the original variables, we obtain

Observation 2. Equation (8) admits exact solutions
of the form

ϕ(ξ) = ∓
(

3
√
a

cosh (2
√
aξ)− sinh (2

√
aξ)−

√
3c

)1/2

,

(30)
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ϕ(ξ) = ∓
(

3
√
a

cosh (2
√
aξ) + sinh (2

√
aξ)−

√
3c

)1/2

,

(31)

where ξ = kx − wt + ξ0, a, b, and c are as in (9) with
3b2 = 16ac, while all involved constants remain arbitrary;
Eq. (5) admits a traveling wave solution of the form

u(x, t) = ϕ(ξ) exp (i (ψ(ξ)− θt)) ,

where ϕ(ξ) is described by (30) or (31), and ψ(ξ) is de-
�ned as in (7).
Remark 2. If degA1(z) = k > 3, then we de-

duce that degB(z) = k − 1 and degA0(z) = 2k due
to Eqs. (17) and (18). However, this yields a contradic-
tion with Eq. (16) because the degree of the polynomial
B(z)A0(z) is 3k − 1 while the degree of the polynomial
(az + bz3 + cz5)A1(z) is k + 5.
Remark 3. It is worth to mention here that, in [32],

a bounded traveling wave solution was proposed to the
two-dimensional Korteweg�de Vries�Burgers equation by
analysing some cases similar to Eq. (8). In addition,
a special case of Eq. (5) was also solved by a similar
ansatz [33].

4. The Schrödinger equation

with Kerr law nonlinearity

Next, we consider the higher-order nonlinear
Schrödinger equation with the Kerr law nonlinear-
ity in the form

ut = iγ1uxx + iγ2u|u|2 + γ3uxxx + γ4
(
u|u|2

)
x

+ γ5u
(
|u|2
)
x
, (32)

which describes propagation of pulses [34], where
u = u(x, t) is a complex function, i is the imaginary
unit, and γj (0 ≤ j ≤ 5) are arbitrary real parameters.
In fact, Eq. (32) is a simple Sasa�Satsuma equation that
arises in nonlinear �ber optics (predominantly). In order
to solve Eq. (32), we take the gauge transformation

u(x, t) = ψ(ξ) exp (i(αx− βt)) ,
ξ = kx− wt+ ξ0 (33)

into account, where ψ = ψ(x, t) is a real function, α,
β, k, and w are arbitrary constants to be speci�ed,
ξ0 is an arbitrary phase shift. Substituting (33) into
Eq. (32), and equating the real and imaginary parts to
zero, respectively, we get the real system of ordinary
di�erential equations

k2 (γ1 + 3αγ3)ψ
′′ +

(
β − α2γ1 − α3γ3

)
ψ

+ (γ2 + αγ4)ψ
3 = 0, (34)

k3γ3ψ
′′′ +

(
w − 2kαγ1 − 3kα2γ3

)
ψ′

+ (3kγ4 + 2kγ5)ψ
2ψ′ = 0, (35)

where ψ = ψ(x, t) and the primes denote derivatives
with respect to ξ. Under the constraint conditions

α =
3γ2γ3 − γ1 (3γ4 + 2γ5)

6γ3 (γ4 + γ5)
,

β =
γ1 (w − 2kαγ1) + α (3w − 8kαγ1) γ3 − 8kα3γ23

kγ3
,

(36)

Eqs. (34) and (35) turn out to be

ψ′′ − 2kαγ1 + 3kα2γ3 − w
k3γ3

ψ +
3γ4 + 2γ5
3k2γ3

ψ3 = 0. (37)

Setting z = ψ and y = ψ′ in Eq. (37), we obtain the
equivalent planar system{

dz
dξ = y,
dy
dξ = 2kαγ1+3kα2γ3−w

k3γ3
z − 3γ4+2γ5

3k2γ3
z3.

(38)

From now on, we shall omit some of the details because
the procedure is the same. According to the �rst integral
method, we consider the case m = 2 of (10). Then, by
equating the coe�cients of yi (0 ≤ i ≤ 3) on both sides
of (11), we have

y3: A′2(z) = C(z)A2(z), (39)

y2: A′1(z) = C(z)A1(z) +B(z)A2(z), (40)

y1: A′0(z) = C(z)A0(z) +B(z)A1(z)

− 2

(
2kαγ1 + 3kα2γ3 − w

k3γ3
z − 3γ4 + 2γ5

3k2γ3
z3
)

×A2(z), (41)

y0: B(z)A0(z) = A1(z)

(
2kαγ1 + 3kα2γ3 − w

k3γ3
z

− 3γ4 + 2γ5
3k2γ3

z3
)
. (42)

Since A2(z) and C(z) are polynomials, from Eq. (39) we
deduce that C(z) = 0 and A2(z) must be a constant. For
simplicity, we can take A2(z) = 1. Balancing the degrees
of A0(z), A1(z), and B(z), we conclude that degB(z) = 1
only. Suppose that B(z) = b1z+ b0 (b1 6= 0). Then, from
(40) and (41), we get

A1(z) =
b1
2
z2 + b0z + e, (43)

A0(z) =

(
b21
8

+
3γ4 + 2γ5
6k2γ3

)
z4 +

b1b0
2
z3

+

(
eb1 + b20

2
− 2kαγ1 + 3kα2γ3 − w

k3γ3

)
z2

+ eb0z + f, (44)

where e and f are integration constants. Substituting
A0(z), A1(z), and B(z) into (42) and setting the coe�-
cients of zi (0 ≤ i ≤ 5) to zero, we derive a system of
nonlinear algebraic equations for b0, b1, e, f, k, w, α, and
γi's. Solving the resultant system simultaneously, we get
the solution set

f = −
3
(
w − 2kαγ1 − 3kα2γ3

)2
2k4γ3 (3γ4 + 2γ5)

,

e = ∓
√
6 (kα (2γ1 + 3αγ3)− w)
k2
√
−γ3 (3γ4 + 2γ5)

,

b0 = 0, b1 = ±2

k

√
−6γ4 + 4γ5

3γ3
, (45)

where all other constants remain arbitrary. Using the re-
lation (45) in (10), we get
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y = ∓
(
2kαγ1 + 3kα2γ3 − w

k3γ3
− 3γ4 + 2γ5

3k2γ3
z2
)

/
1

k

√
−6γ4 + 4γ5

3γ3
. (46)

Combining the �rst equation of (38) with Eq. (46), solv-
ing the resulting equations by quadratures, and changing
to the original variables, we obtain
Observation 3. Equation (32), under the condition

(36), admits exact solutions of the form

u±1 (x, t) = ±

√
3 (w − 2kαγ1 − 3kα2γ3)

3kγ4 + 2kγ5

× tan

(√
2kαγ1 + 3kα2γ3 − w

2k3γ3
(kx− wt+ ξ0)

)
× exp (i(αx− βt)) , (47)

where w−2kαγ1−3kα2γ3
k3γ3

< 0 and 3γ4+2γ5
k2γ3

< 0, while all
involved constants remain arbitrary; and

u±2 (x, t) = ±

√
3 (2kαγ1 + 3kα2γ3 − w)

3kγ4 + 2kγ5

× tanh

(√
w − 2kαγ1 − 3kα2γ3

2k3γ3
(kx− wt+ ξ0)

)
× exp (i(αx− βt)) , (48)

where w−2kαγ1−3kα2γ3
k3γ3

> 0 and 3γ4+2γ5
k2γ3

< 0, while all
involved constants remain arbitrary.

5. Conclusion

Exact and explicit solutions when they are available
can help us to well understand the mechanism of the com-
plicated physical phenomena modeled by NEEs. First
integrals play a crucial role in the study of nonlinear or-
dinary di�erential equations because they permit one to
solve a nonlinear di�erential equation by quadratures. In
this study, we observed that the �rst integral method can
be a useful tool for discovering �rst integrals of higher-
-order nonlinear Schrödinger-type equations by analyzing
two speci�c equations. The method seems to be appli-
cable to other physically important NEEs which can be
converted to a second-order ordinary di�erential equation
through a traveling wave transformation.
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