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1. Introduction

After the discovery of excellent thermoelectric prop-
erties of the single crystalline rhombic semiconductor
In4Se3 quanti�ed by the dimensionless �gure of merit,
ZT , which appeared to be larger than 1.4 [1], an inten-
sive research of the indium selenides group has re-started.
To the thermoelectric performance of a material, gov-
erned by the ZT value, contribute both electrical conduc-
tivity σ, the Seebeck coe�cient α and thermal conduc-
tivity κ. The chalcogenide indium semiconductors with
layered structure are potential thermoelectric candidates
due to their low thermal conductivity. Since there is a
possibility to interpret the thermoelectric properties of
In4Se3 at high temperatures [2] by means of the conden-
son state theory [3], it is necessary to re-examine �rst the
parameters of its dispersion law for charge carriers.

2. Parameters of the condenson state in In4Se3,

Sn- and Te-doped In4Se3 semiconductors

The concept of condenson was introduced by Deigen
and Pekar [3] who analyzed the interaction of a con-
duction electron with acoustic phonons in a homopolar
dielectric within the e�ective mass and potential defor-
mation approximations, for a quadratic dispersion law
governing the electron motion. A functional of a total
energy of the system is

E[ψ, εij ] =
~2

2m∗

∫
(∇ψ)2dr +

∫ ∑
ij

bijεij |ψ|2dr

+ U
(
{εij}

)
, (1)

where bij are the deformation potential tensor compo-
nents and εij are the deformation tensor components.

Second term in (1) describes interaction of an electron
with lattice, while the third one is the energy of a local
elastic deformation of crystal. By varying (1) with re-
spect to deformation tensor components it is possible to
connect those components with the elastic constants and
wave function ψ of the system. As a result, functional (1)
takes the form

E[ψ] =
~2

2m∗

∫
(∇ψ)2dr − b2

λ

∫
|ψ|4dr, (2)

where b and λ represent combinations of deformation
potential tensor components and elastic moduli, respec-
tively. Since the bounded electron states are expected
to arise in a crystal, the probe function ψ can be chosen
as [4]:

ψ(r) = µd/2ψ0(µr), (3)

where µ is a variational parameter that connects the ra-
dius re of the condenson formation with the lattice con-
stant a (µ ∼ ar−1

e ), and which is at the same time the
parameter of a scale transformation. The scale transfor-
mation gives a possibility to analyze our issue for three
cases of space dimension (d = 1, 2, 3 [4]). In the case of a
3D-crystal (d = 3) and anisotropic scale transformation,
the ψ function takes the form [5, 6]:
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(
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2
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)3/2

× exp

(
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)2
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(
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)2))
. (4)

Substitution of (3) into (2) leads to a functional in the
form [4]:

(1115)
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E[µ] = a1µ
2 − a2µ

d, (5)

where a1 and a2 are quantities in units of energy [3].
It can be shown that in a 3D case functional (5) has no
minimum. Hence, the stable condenson states of electron
do not exist in continuum approximation, but only such
states with large radius are interesting from the view-
point of prognosis of material thermoelectric properties.
On the other hand, in a 1D case in continuum approxi-
mation the condenson states (or self-localized states [7])
are possible. It was also shown that this approximation
allows the existence of condenson states in deformed 2D-
-structures [8]. Hence, it is obvious that the possibility
for the localized condenson state to arise, depending on
the dimension of space, is closely related to a di�erent
density of states function for the parabolic dispersion law
in the case of 3D, 2D, and 1D-crystals.

3. Results

Our �rst semi-empirical pseudopotential band struc-
ture calculations of the bulk In4Se3 crystal [5] showed
that both its valence and conduction band is described by
a dispersion law that di�ers essentially from the parabolic
one

E(k) = −α1k
2
x − α2k

2
y − α3k

2
z + β1k

4
x + β2k

4
y + β3k

4
z

(6)

with coe�cients showing the opposite sign and inequality
βi ≫ αi. Additionally, a peak-like density of states func-
tion was obtained for the dispersion law (6) [5, 6] which
was analogous to that of 1D-crystal with a parabolic dis-
persion law. The above type of dispersion law with nega-
tive curvature was con�rmed also by ab initio DFT based
band structure calculations [9]. Such peculiarity of the
In4Se3 spectrum is correlated well with the obtained by
us peak of imaginary part of the dielectric permittivity
tensor at the edge of its energy dependence, for the po-
larization of light in the direction (100) (see Fig. 1).

Fig. 1. The energy dependence of ε2 for the polariza-
tion of light E ∥ a in the In4Se3 crystal.

The coe�cients of the dispersion law (6) are crucial
to �nd the parameters of the condenson state. Hence,
in order to correlate theoretical investigations with ex-
perimental data concerning thermoelectric properties of
In4Se3 (α(T ), σ(T ), κ(T ) dependences), it is necessary
to state �rst the coe�cients of the dispersion law (6)
precisely. The repeated In4Se3 electronic spectrum cal-
culations with the use of other approaches and package
programs (ab initio full-potential nonorthogonal local-

-orbital minimum basis scheme and pseudopotential lin-
ear combination of atomic orbitals (LCAO) one) led to
slightly di�erent values of αi and βi. Spin�orbit interac-
tion taken into account did not result in changes of the
electronic spectrum, since the In4Se3 crystal is a cen-
trosymmetric one and one-dimensional representations
describing energy states (near Γ point) were doubled
only. In order to estimate changes of the dispersion law
parameters due to the introduction of Sn and Te dopants
to the host material, we calculated dispersion relations
E(k) for the 1 × 1 × 4 In4Se3 supercell, both for pure
crystal and with the presence of a pair of dopant atoms
(see Fig. 2).

Fig. 2. Dispersion relations in the Γ�X direction of
the undoped (left), Sn-doped (middle), and Te-doped
In4Se3 crystal.

The application of supercell allowed to model ≈ 3%
and ≈ 4% dopant concentration of Sn and Te, respec-
tively. Introduction of Sn dopant pair is motivated by a
necessity to obtain the semiconducting type of band oc-
cupation. The band structure calculations were done in
the framework of density functional theory (DFT) with
the use of local density approximation (LDA) to describe
exchange-correlation interaction, by means of the pack-
age program SIESTA [10]. Since the periodic boundary
conditions were applied for the cell's modeling they led to
a uniform placement of dopants in every supercell, which
is to some extent a kind of idealization. It should be also
noted that due to a large electronegativity of Te atoms,
the wave functions of neighboring dopants overlap to a
smaller extent than those of Sn atoms, and hence, the re-
sults obtained for the Te dopants are more adequate. As
a consequence, the introduction of two Sn dopant atoms
having four valence electrons instead of two trivalent In
atoms leads to the occupation of another extra band and
to a change of conductivity type from the semiconducting
to metallic one. Certainly, at the chaotic placement of
dopants a local level should appear which would smear
to a dopant band in the energy gap with the increase
in dopant concentration. Nevertheless, it is possible to
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investigate changes of the dispersion law (6) parameters
by comparing the corresponding bands of the doped and
host materials. In the case of isovalent Te dopant, the
number of dispersion bands remains unchanged and the
obtained results can be compared directly to the results
of a host In4Se3 material.

TABLECoe�cients of the dispersion law (6)
and parameters of the condenson state.

In4Se3 [5, 6]
Supercell 1× 1× 4

In4Se3
In4Se3−xTex
(x = 0.125)

In4−xSexSe3
(x = 0.125)

α1 [eV] 5.7 4.0 7.16 6.24
α2 13.0 −0.46 0.72 −0.14
α3 3.1 −0.52 −0.08 −0.35
β1 479.8 59.9 691.33 610.4
β2 888.0 3.54 13.81 9.91
β3 2957 0.50 1.51 1.42

E1 [eV] −0.01 −0.012 −0.0071 −0.0044
re [Å] 100 52 107.8 117.50

The calculated values of α and β coe�cients for all
three discussed cases are summarized in Table. Addi-
tionally, for a comparison, we include parameters of the
dispersion law (6) obtained by means of semi-empirical
pseudopotential band structure calculations [5] together
with the condenson state parameters, i.e. its binding en-
ergy E1 and radius re. From Table it follows that the
tendency to preserve non-parabolic behavior of disper-
sion relations is kept for the Sn- and Te-doped In4Se3.
The non-parabolic dispersion relation is a necessary con-
dition for the condenson states to exist in those ma-
terials. At the same time, introduction of Te dopant

leads to a change of sign of the quadratic term coe�-
cient in the Γ�Y direction, which is observed neither in
the case of undoped nor Sn-doped In4Se3. Investigations
on the condenson state dynamics show that introduction
of a dopant into cationic or anionic sublattices increases
the e�ective radius of these collective excitations, which
can lead to a �multicondenson� state [5, 6]. However, is
should be noted that all the obtained results were ob-
tained at T = 0 K and they are estimations of the situa-
tion that take place at elevated temperatures.
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