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We report the theoretical study of the optical response of a periodically modulated two-dimensional electron
gas. The density of states is calculated within the �rst order of the perturbation theory and the e�ects of the
short-range disorder are explained and discussed. We demonstrate that the magnetic �eld values corresponding
to the characteristic narrowing of the density of states width are given by the zeros of the subsequent Laguerre
polynomials. The observed increase of the density of states at the edges are interpreted as van Hove singularities.
The broadening e�ects are shown to modify and smear out the observed e�ects with increasing temperature above
2 K. The plasmon dispersion relation is discussed in terms of the random phase approximation. Small changes in
plasmon dispersion relation related to the periodic modulation were predicted.
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1. Introduction

A two-dimensional electron gas (2DEG) can resonantly
couple to the electromagnetic radiation of THz frequen-
cies [1, 2]. At low temperatures and magnetic �elds
this system exhibits low energy resonances which in-
clude, among others, magnetoplasmons, edge plasmons,
magneto-excitons or the Bernstein modes. In this study
we concentrate on magnetoplasmons as the basic collec-
tive excitations of the 2DEG at THz frequencies. The
momentum conservation principle forbids the coupling
of plasmons to electromagnetic waves at the normal in-
cidence. To overcome this restriction, one may impose
a lateral modulation of 2DEG. Such modulation is typi-
cally induced by a metallic grid or an interference pattern
of the laser light.
Following this idea, we have investigated properties of

a 2DEG which is subject to a spatially periodic modu-
lation by an electrostatic potential. This perturbation
to the system allows for an e�cient coupling of the inci-
dent THz radiation with a 2D plasmon due to a broken
translational symmetry. The mechanism of the coupling
can be understood in terms of the Brillouin zone fold-
ing. As a result of modulation the plasmon dispersion
relation is folding which allows for intersections with a
photon dispersion relation. This opens the possibility for
a photon�plasmon coupling.

2. Model

Considered system was the 2DEG in a xy plane
which was subjected to a uniform perpendicular mag-
netic �eld B, and a periodically modulated weak poten-
tial V (x) = V0 cos(Gx), where 2πG−1 was a period of

modulation. The one-electron Hamiltonian of the sys-
tem in the e�ective mass approximation regime was as
follows:

H =
1

2m∗
e

(p+ eA)2 + V (x), (1)

where m∗
e was the e�ective mass of an electron in the

2DEG, p was a momentum vector, e was the elemen-
tary charge, A = (0, Bx, 0) was a vector potential in
the Landau gauge. The solution of the unperturbed sys-
tem (without the V (x) potential) was a set of normalized
wave functions

ψnky (x, y) =
1√
Ly

e ikyyϕn(x+ x0), (2)

where Ly was the length of the system in the y direc-
tion, ky was a wave vector in the y direction and ϕn(x)
was the normalized n-th order harmonic-oscillator func-
tion with an equilibrium displacement x0 = l2ky, where

l =
√
~/eB denotes the magnetic length. The index n

corresponds to the n-th Landau level (LL). The corre-
sponding eigenvalues are of the form En = ~ωc

(
1
2 + n

)
,

where ωc = eB/m∗
e was the cyclotron frequency. The

eigenstates and the corresponding eigenvalues of the full
Hamiltonian (1) were evaluated within the �rst order of
the perturbation theory. The eigenenergies Enky were
given by [3]:

Enky = ~ωc

(
1

2
+ n

)
+ V0 cos(Gx0)e

−u/2Ln(u), (3)

where u = G2l2/2 and Ln(u) denoted the Laguerre poly-
nomial of the n-th order. In this approximation the new
eigenfunctions Ψnky were as follows:
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Ψnky = ψnky (x, y) +
∑
n′ ̸=n

Vnn′

En − En′
ψn′ky (x, y), (4)

where Vnn′ = ⟨ψnky |V (x)|ψn′ky ⟩ was a matrix element
of the operator V (x) in the basis of the ψnky states.
In this approximation it was assumed that the wave
function correction was small in terms of normaliza-
tion. It means that ⟨Ψnky

|Ψn′k′
y
⟩ ≈ δnn′δkyk′

y
, which

implied
∑

n̸=n′
Vnn′

En−En′
ψn′ky (x, y) ≈ 0. This would be

useful while deriving the dynamic dielectric function
(DDF) within random phase approximation (RPA) for
the 2DEG. Equation (3) provides full information about
density of states (DOS).

3. Results and discussion

The results of numerical calculations are presented in
Fig. 1 and Fig. 2. The DOS is broadened by the peri-
odic modulation and the broadening oscillates as function
system parameters. The magnetic �eld value of the min-
imum of the DOS width is given by [4]:

Bj =
2n~
πe

G

(
j +

3

4

)−2

, (5)

where j denotes subsequent minima. Important feature
is that j < n because of Eq. (5). This approximation
is very accurate for large n. Similarly, the width of the
Landau band at the Fermi level was given by the approx-
imate relation

Bj =
~kF
πe

G

(
j +

3

4

)−1

. (6)

Second signi�cant e�ect of the periodic modulation is
the increase of the DOS at the edges of the LL. These
are known as the van Hove singularities.

Fig. 1. The DOS as function of magnetic �eld for the
100 nm period of the perturbation potential. The mini-
mum value of DOS in the intensity scale is presented in
white colour, the maximum in black in arbitrary units.

The oscillations of DOS in magnetic �eld were observed
experimentally by Weiss in Refs. [5, 6] and are known as
the Weiss oscillations.

Fig. 2. The evolution of the DOS for di�erent periods
of the perturbation potential and for the magnetic �eld
of 0.7 T. The minimum value of DOS in the intensity
scale is presented in white colour, the maximum in black
in arbitrary units.

Fig. 3. The Lorentzian broadening of the DOS for four
di�erent FWHM parameters Γ = kBT , characterized by
temperatures as marked in the picture.

The DOS calculated within Eq. (3) of the 2DEG in
perpendicular magnetic �eld with periodic modulation is
considered in the ideal case of T = 0 K and no broadening
e�ects due to disorder. This problem gets more compli-
cated when matched to real experiments. To get more
realistic information about the structure of the DOS the
disorder is included and the results of our calculations
are shown in Fig. 3. We include only short ranged un-
correlated disorder potential caused by dopants and im-
purities. The resulting DOS is broadened in terms of
convolution with Lorentzian curve. This is described by

ρΓ (E) =

∫ +∞

−∞
ρ(Ẽ)Γ (E − Ẽ)dẼ, (7)

where Γ denotes the Lorentz distribution function. Here
ρΓ denotes DOS ρ broadened by the disorder. Obviously
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for high enough level of disorder the van Hove singular-
ities are no more visible. One way of probing the e�ect
of disorder on the density of states is by the photolu-
minescence (PL) experiments. Unfortunately these mea-
surements provide only convolved information about the
DOS. This should be contrasted to transport experiments
that probe the DOS at the Fermi level and are dependent
mostly on the localized states.
Calculated DOS provides information on the plasmon

dispersion relation in the 2DEG modulated by periodic
potential. This is crucial for the e�cient resonant cou-
pling of the THz radiation to the 2DEG system. The
plasmon resonances are given by the singularities in the
real part of the inverse dielectric function. The dielectric
function for the 2DEG in the uniform magnetic �eld is
calculated within the Lindhard formula

ϵr(ω, q) = 1 +
4πe2

q2
2

Ω

×
∑

nn′kk′

fnk − fn′k′

Enk − En′k′ − ~(ω + iη)
|Mnn′kk′ |2, (8)

where

Mnn′kk′ ≈ ⟨nk|e iqr|n′k′⟩

=


δk′

y,ky−qy e
− iΘ−γ/2

(
2nn!
2n′n′!

)1/2

× vn
′−nLn′−n

n (γ), n ≤ n′,

δk′
y,ky−qy e

− iΘ−γ/2
(

2nn′!
2n′n!

)1/2

× (−v∗)n−n′
Ln−n′

n′ (γ), n ≥ n′,

and fnk is the Fermi�Dirac distribution function. Here
γ = l2q2/2, Θ = l2qx(−ky + qy/2), v = l(qy + iqx)/2 and

Ln′

n is the associated Laguerre polynomial. This is the
consequence of using the �rst order perturbation theory
because corrections for the matrix elements Mnn′kk′ can
be neglected. For simplicity only q in the x direction are
considered. This implies the following reduction of the
sum in:

ϵr(ω, q) = 1 +
4πe2

q2
2

Ω

×
∑
nn′k

fnk − fn′k

Enk − En′k − ~(ω + iη)
|Mnn′kk|2. (9)

The above Eq. (9) is slightly di�erent from Eq. (8). The
matrix element in the sum is approximately the same as
in the absence of the modulating potential, so is the value

of the Fermi�Dirac distribution function. The main per-
turbing term in formula given by Eq. (9) is Enk−En′k. If
the modulation period is short enough, these di�erences
will be much a�ected by the perturbation. Hence the
plasmon resonance peaks must shift. This should be the
main feature observed at very low temperature exper-
iments with short period of modulation. This delicate
e�ects could be observed in the Raman spectroscopy ex-
periments. The di�erence in the value of the fnk−fn′k is
only observed in the regime of the liquid helium temper-
ature where this term gets signi�cant around the Fermi
level. This means that the dielectric function would not
be a�ected in the regime of energies higher than few kBT ,
where kB is the Boltzmann constant. Therefore, at high
temperature the e�ect of the modulation will not be vis-
ible in the DOS.

4. Summary

The density of states of the periodically modulated
2DEG were calculated. The periodic modulation slightly
a�ects the plasmon dispersion relation in the regime of
the �rst order perturbation theory and the RPA by the
modi�cation of the density of states. The width of the
density of states oscillates and the strong increase of den-
sity is observed at the edges of the Landau bands.
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