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1. Introduction

Four decades ago Dyakonov and Perel predicted trans-
verse spin current (or spin accumulation) induced by an
electric current �owing through system with spin�orbit
interactions [1, 2]. This e�ect was reconsidered later
by Hirsch [3], and is known now as the spin Hall ef-
fect (SHE). Since then, SHE was extensively studied �
mainly because it allows to manipulate the spin degree
of freedom with electric �eld only. Such a possibility is
interesting from fundamental reasons, but it is also very
important for further development of spintronic devices,
especially those whose functionality is based on magnetic
switching and magnetic dynamics.

Generally, SHE may occur in metallic and semicon-
ducting systems with spin�orbit interaction. Further-
more, mechanisms leading to SHE may be either of intrin-
sic or extrinsic origins (for overview see Refs. [4�7]). The
extrinsic SHE arises from spin�orbit scattering on impu-
rities (side jump and skew scattering). However, there is
also intrinsic spin�orbit interaction having crystal lattice
periodicity and contributing to the relevant band struc-
ture. The corresponding intrinsic SHE is a consequence
of an unusual trajectory of the charge carriers in the mo-
mentum space.

In this paper we consider SHE in a two-dimensional
electron gas (2DEG). The latter can be considered as a
basic model of semiconducting structures like quantum
wells and heterojunctions. The dominant spin�orbit in-
teractions in 2DEG are the Rashba and the Dresselhaus
ones. SHE in 2DEG was extensively studied in recent
years. For instance, Sinova et al. [8] reported a univer-
sal value of intrinsic spin Hall e�ect in 2DEG with the
Rashba spin�orbit interaction. The e�ect, however, is
totally suppressed when one takes into account the pres-
ence of impurities with point-like scattering potentials.

It has been also shown that randomness of spin�orbit
interaction (due to random distribution of dopant ions,
some imperfections of quantum well interfaces, etc.) can
play an important role in spin manipulation and spin
transport [9]. For instance, �uctuating Rashba �eld can
induce SHE in 2DEG [10]. However, the corresponding

spin Hall conductivity is not universal, but depends on
the momentum and spin relaxation times.

2. Model

We consider SHE in a 2DEG with constant Dresselhaus
spin�orbit coupling and spatially �uctuating Rashba in-
teraction (see Fig. 1). The latter will be treated pertur-
batively. In the momentum space, Hamiltonian of the
system takes the following form (we use the units with
~ = 1):

H =
∑
kk′

Ψ †
kHkk′Ψk′ , (1)

with

Hkk′ =
k2

2m
δkk′ + β(σxkx − σyky)δkk′

+
λkk′

2

[
σx(ky + k′y)− σy(kx + k′x)

]
. (2)

Herem is the electron e�ective mass, β is the Dresselhaus
spin�orbit constant, λkk′ describe the random Rashba
spin�orbit interaction, and σα (for α = x, y, z) are the
Pauli matrices. We assume that the spatially averaged
Rashba interaction vanishes (⟨λ(r)⟩ = 0), but there is a
nonzero correlation function (⟨λ(r)λ(r′)⟩ = C(r − r′)).
Furthermore, we assume this correlator in the form [9]:

Cq = |λq|2 = 2π⟨λ2⟩(2R)2 e−2qR, (3)

where Cq is the Fourier transform of the correlator
C(r − r′), R is the spatial scale of �uctuations, and
q = k−k′ is the momentum change due to scattering by
�uctuations of the Rashba �eld.
The charge current operator is de�ned as ĵi = ev̂i,

where v̂i is the velocity operator,

v̂i =
∂H

∂ki
. (4)

Thus, the components ĵx(y) can be written explicitly as

ĵx(y) =
e

m
kx(y)δkk′ ± βeσx(y)δkk′ ∓ eλkk′σy(x). (5)

The spin current operator, in turn, is de�ned as

ĵsαi =
1

2e
{ĵi, ŝα} =

1

4e
{ĵi, σα}, (6)

where {. . .} stands for the anticommutator and ŝα =
σα/2.

(1016)
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Fig. 1. Schematic picture of spin Hall e�ect in a quan-
tum well. Due to randomly distributed dopants, there is
a random Rashba spin�orbit interaction in the system,
in addition to the uniform Dresselhaus one.

To calculate the spin Hall conductivity we use the
Kubo formalism. The retarded Green function of the
system without perturbation is

GR
k = GR

k0σ0 +GR
kxσx +GR

kyσy, (7)

where

GR
k0 =

1

2

(
GR

k+ +GR
k−

)
, (8)

GR
kx =

1

2
cosϕ

(
GR

k+ −GR
k−

)
, (9)

GR
ky = −1

2
sinϕ

(
GR

k+ −GR
k−

)
, (10)

with

GR
k± =

1

ε− Ek± + iΓ
(11)

and ϕ denoting the angular coordinate of the vector k.
Here Ek± = εk ±βk are the two electron bands of 2DEG
with Dresselhaus interaction, εk = k2/2m, and Γ = 1/2τ
with τ denoting the relevant relaxation time. For sim-
plicity, we treat Γ as a phenomenological parameter.

3. Spin Hall conductivity

Following the Kubo�Streda formula [11], we write the
spin Hall conductivity as

σsz
xy = σszI

xy + σszII
xy , (12)

where σszI
xy is determined by the retarded and advanced

Green functions at the Fermi level,

σszI
xy =

e

2π

∫
d2k

(2π)2
Tr

{
ĵszx GR(εF)v̂yG

A(εF)
}
. (13)

In turn, σszII
xy is the contribution to the spin Hall con-

ductivity, which depends on states below the Fermi level.
This term, however, vanishes in the system under con-
siderations.
The lowest-order diagrams contributing to the spin

Hall conductivity are depicted in Fig. 2. The bare bub-
ble diagram (D1) corresponds to the intrinsic term. Di-
agrams D2 and D3 are connected with the presence of
anomalous velocity vertex and they are a consequence of
the random Rashba �eld. Accordingly, the spin Hall con-
ductivity may be written as

σsz
xy =

e

2π
Tr

∑
kk′

(D1 +D2 +D3). (14)

Since the intrinsic contribution σsz int
xy is given by [12]:

σsz int
xy =

e

2π
Tr

∑
kk′

D1 = − e

8π
, (15)

we write σsz
xy in the form

σsz
xy = − e

8π
+ δσsz

xy. (16)

The term σsz int
xy is universal for the 2DEG when the Dres-

selhaus spin�orbit interaction is dominant, as already dis-
cussed earlier [12].

Fig. 2. The Feynman diagrams contributing to the
spin Hall conductivity in the dc limit.

Let us consider now the contribution δσsz
xy due to ran-

dom Rashba �eld,

δσsz
xy =

e

2π
Tr

∑
kk′

(D2 +D3). (17)

Upon calculating contributions from the relevant dia-
grams one �nds

δσsz
xy =

e

2π

∑
kk′

kx
2m

(ky + k′y)
|λkk′ |2

2
(T1 + T3)

− e

2π

∑
kk′

kx
2m

(kx + k′x)
|λkk′ |2

2
(T2 + T4), (18)

where

T1 + T3 = i
1

2
(cosϕ sinϕ′ + sinϕ cosϕ′)

×
(
GA

k+G
R
k− −GA

k−G
R
k+

)
×
(
GA

k′− −GA
k′+ +GR

k′− −GR
k′+

)
, (19)

T2 + T4 = − i
1

2
(cosϕ cosϕ′ − sinϕ sinϕ′)

×
(
GA

k+G
R
k− −GA

k−G
R
k+

)
×
(
GA

k′+ −GA
k′− +GR

k′+ −GR
k′−

)
+ i

(
GR

k+G
A
k− +GR

k−G
A
k+

)(
GA

k′0 −GR
k′0

)
, (20)

with the Green functions taken at the Fermi level.
Taking into account that k′ = k − q, and integrating

over ϕ one �nds

δσsz
xy =

eΓ
√
2

16π2

∫
dqq

∫
dθ

∫
dkk

Cq

4m
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× k(2k − q cos θ)

(εF − εk)2 + 2mβ2εk

× [|F1|δ(εk − ε1) + |F2|δ(εk − ε2)]

× [δ(εF − Ek−q+) + δ(εF − Ek−q−)], (21)

where θ is the angle between vectors k and q, while Fi

(i = 1, 2) are de�ned as:

Fi =

[
2mβ2εi + (εi − εF)

2
]3/2

(εi − εF)3 + 3mβ2(ε2i − ε2F)− 2m2β4εi
, (22)

with

ε1,2 = mβ2 + εF ∓
√
m2β4 + 2mβ2εF. (23)

The next step is to convert the Dirac delta function
δ(εF − Ek−q±) ⇒ δ(θ − θn), where θn are solutions of
the equation εF − Ek−q± = 0. In Fig. 3 we show the
contribution to spin Hall conductivity due to random
Rashba �eld as a function of the Dresselhaus coupling
parameter β. Note that this contribution tends to zero
for su�ciently large values of β.

Fig. 3. Contribution δσsz
xy to the spin Hall conductiv-

ity as a function of the Dresselhaus spin�orbit coupling
parameter β for indicated values of R and εF. The
other parameters are:

√
⟨λ2⟩ = 1.5 × 10−12 eV m,

Γ = 0.5 meV, and m = 0.05m0.

Fig. 4. The contribution δσsz
xy as a function of the cor-

relation parameter R for indicated values of εF and β.
The other parameters are as in Fig. 3.

In Fig. 4, in turn, the spin Hall conductivity is pre-
sented as a function of the parameter R describing cor-

relation length of the �uctuating Rashba �eld. In the
limit of long-range correlations (kFR ≫ 1) the spin Hall
conductivity is a linear function of R, but for kFR ≪ 1
the term δσsz

xy is suppressed and tends to zero as a func-

tion of R2. This result is consistent with previous results
for system with random Rashba spin�orbit interaction
only [10].

4. Conclusion

We have analyzed SHE in a two-dimensional electron
gas with constant Dresselhaus spin�orbit coupling and
�uctuating Rashba interaction. In such a case, the spin
Hall conductivity has a universal intrinsic contribution,
σsz int
xy , and an additional term, δσsz

xy. The latter con-
tribution, however, is suppressed for su�ciently strong
Dresselhaus spin�orbit interaction.

Acknowledgments

This work has been supported by the European Union
under European Social Fund � Operational Programme
Human Capital � POKL.04.01.01-00-133/09-00 and by
National Center of Science (NCN, Poland) as a research
project No. DEC-2011/03/N/ST3/02353 for years 2012�
2014. The authors also acknowledge valuable discussions
with V.K. Dugaev.

References

[1] M.I. Dyakonov, V.I. Perel, Pis'ma Zh. Eksp. Teor.
Fiz. 13, 657 (1971); JETP Lett. 13, 467 (1971).

[2] M.I. Dyakonov, V.I. Perel, Phys. Lett. A 35, 459
(1971).

[3] J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).

[4] J. Schliemann, Int. J. Mod. Phys. B 20, 1015 (2006).

[5] A. Engel, E.I. Rashba, B.I. Halperin, in: Handbook of
Magnetism and Advanced Magnetic Materials, Eds.
H. Kronmuller, S. Parkin, Vol. 5, Wiley, New York
2007, p. 1.

[6] M.I. Dyakonov, A.V. Khaetskii, in: Spin Physics in
Semiconductors, Ed. M.I. Dyakonov, Springer-Verlag,
Berlin 2008, Chap. 8.

[7] G. Vignale, J. Supercond. Nov. Magn. 23, 3 (2010).

[8] J. Sinova, D. Culcer, Q. Niu, N.A. Synitsyn, T. Jung-
wirth, A.H. MacDonald, Phys. Rev. Lett. 92, 126603
(2004).

[9] M.M. Glazov, E.Ya. Sherman, V.K. Dugaev, Phys-
ica E 42, 2157 (2010).

[10] V.K. Dugaev, M. Inglot, E.Ya. Sherman, J. Barna±,
Phys. Rev. B 82, 121310(R) (2010).

[11] P. Streda, J. Phys. C, Solid State Phys. 15, L717
(1982).

[12] N.A. Sinitsyn, E.M. Hankiewicz, W. Teizer, J. Sinova,
Phys. Rev. B 70, 081312(R) (2004).


