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In this paper we propose a formula of recurrent nature for calculating the inverse Laplace transforms of some
rational functions. The procedure and formulae enabling to determine the values of coe�cients of obtained series
are presented. Proposed procedure does not require any partial fraction decomposition. Moreover, it is proved
that the radius of convergence of the received series (for the respective objective function) is equal to in�nity. The
proposed formula can �nd applications in wave optics and acoustics.
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1. Introduction

Scope of this paper is a description of the procedure of
calculating the inverse Laplace transforms of the follow-
ing rational functions:

p(z)

(z − z0)n +A(z − z0) +B
, (1)

where A,B, z0 ∈ C, AB ̸= 0, p ∈ C[z], deg p < n and all
complex zeros of the trinomial zn +Az +B are simple.
Extraordinary in the proposed below formula (14) for

the inverse transform of the original (1) is the fact that
it contains only the coe�cients of the polynomials from
numerator and denominator of (1) (more precisely, it is
dependent only on A, B and coe�cients of p(z)). The
roots of this polynomials implicitly participate only in
generating formula (14), therefore these roots do not ap-
pear in this formula at all. The procedure and formulae
enabling to determine the values of coe�cients of the re-
ceived series are presented. For evaluating these formu-
lae only the fundamental theorem of algebra appeared
to be necessary. Moreover, it is proved that the radius
of convergence of the received series (for the respective
objective function) is equal to in�nity.

2. Example

Let us start our deliberations with designating the in-
verse Laplace transform of the following rational func-
tion:

(z8 + 8z + 1)−1. (2)

Let us assume that ξj ∈ C, j = 1, 2, . . . , 8, are all com-
plex roots of the polynomial p(z) := z8+8z+1. Because
p′(z) := 8(z7 + 1), so

p′(z) = 0 ⇔ z ∈ 7
√
−1 ⇒ |z| = 1 ⇒ p(z) ̸= 0,

therefore all zeros of p(z) are simple.
Let us set

Sk :=
8∑

j=1

ξkj and Tk :=
8∑

j=1

ξkj
1 + ξ7j

, (3)

for k = 0, 1, 2, . . .
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From the Newton�Girard formulae for polynomial p(z)
(see [1, 2]) we obtain{

S0 = 8, S1 = . . . = S6 = 0, S7 = −56,

Sk+8 = −8Sk+1 − Sk, k = 0, 1, 2, . . .
(4)

By induction we get

|Sk| ≤

{
7× 2k−4 whenever k ∈ 2N− 1,

2k−5 whenever k ∈ 2N.

Moreover, for every j ∈ {1, 2, . . . , 8} the following rela-
tions can be deduced:

ξj(1 + ξ7j ) = ξ8j + ξj = p(ξj)− 7ξj − 1 = −7ξj − 1

and

(7ξj + 1)

(
8 +

7∑
r=0

(−7)−rξ7−r
j

)
= 1− 1

77
.

Hence we get

−
(
1− 1

77

)
Tk =

8∑
j=1

ξk+1
j

(
8 +

7∑
r=0

(−7)−rξ7−r
j

)
(5)

=

(
8− 1

77

)
Sk+1 +

1

76
Sk+2

− 1

75
Sk+3 + . . .− 1

7
Sk+7 + Sk+8 (6)

and, by (4) and (6), we obtain{
T0 = T1 = . . . = T6 = 0, T7 = 8,

Tk+8 = −8Tk+1 − Tk, k = 0, 1, 2, . . .
(7)

It is clear that all Tk are integers. Furthermore, rela-
tion (5) is the Binet formula for Tk. Let us also observe
that |Tk| ≤ 2k−16 for k = 22, 23, . . .

In the next step we can attempt to designate the in-
verse transform of function (2). We have the following
partial fractions decomposition:

1

p(z)
=

8∑
j=1

1

8
(
ξ7j + 1

)
(z − ξj)

.

Hence, there can be deduced the following formula:

L−1

(
1

z8 + 8z + 1

)
(t) =

1

8

8∑
j=1

eξjt

ξ7j + 1

(966)
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=
1

8

∞∑
k=0

tk

k!

8∑
j=1

ξkj
ξ7j + 1

,

i.e.

L−1

(
1

z8 + 8z + 1

)
(t) =

1

8

∞∑
k=0

Tk
tk

k!
, (8)

where coe�cients Tk are described by recurrence for-
mula (7).
Remark 1. We note that p(z) has only two real roots

ξ1 ≈ −1.327011995189,

ξ2 ≈ −0.125000007451.

The remaining roots p(z) are

ξ3 = ξ̄4 ≈ −0.8207308648 + i1.0530843114,

ξ5 = ξ̄6 ≈ 0.3170740585 + i1.3130419243,

ξ7 = ξ̄8 ≈ 1.2296628076 + i0.5843226746.

3. Generalization

Procedure of determining the inverse transform of
function described by formula (1) is similar to the pro-
cedure described in detail in the above example. First,
by applying the translation of resulting function for the
Laplace transform

L
[
ez0tf(t)

]
(z) = L[f(t)](z − z0),

where f(t) is an objective function (see [3�5]), func-
tion (1) could be replaced by a simple one

p(z)

zn +Az +B
. (9)

Let ξj ∈ C, j = 1, 2, . . . , n be all complex roots of
polynomial q(z) := zn +Az +B. Let

Sk :=
n∑

j=1

ξkj and Tk :=
n∑

j=1

ξkj

A+ nξn−1
j

, (10)

for k = 0, 1, 2, . . . Then, by the Newton�Girard formulae
for polynomial q(z) we have

S0 = n, S1 = . . . = Sn−2 = 0,

Sn−1 = −(n− 1)A, Sn = −nB,

Sk+n = −ASk −BSk−1, k = 1, 2, . . . ,

(11)

whereas

−nB

[
A

n
+ (−C−1)n−1

]
Tk

=
n∑

j=1

ξk+1
j

[
A+

n−1∑
r=0

(−C−1)rξn−1−r
j

]

=
(
A+ (−C−1)n−1

)
Sk+1 + (−C−1)n−2Sk+2

+ . . .+ (−C−1)Sk+n−1 + Sk+n, (12)

where

C =
(n− 1)A

nB
.

Hence, by (11) and (12), we obtain

T0 = 0,[
A

n
+ (−C−1)n−1

]
T1 =

{
1 +AC for n = 3,

1 for n ≥ 4,

[
A

n
+ (−C−1)n−1

]
T2 =


A+ C−2 − C−1 − 2C

for n = 3,

AC − C−1 for n = 4,

−C−1 for n ≥ 5,

etc., up to deriving Tn; whereas, from (11) and (12) we
get the following recurrence equation:

Tk+n = −ATk+1 −BTk, k = 1, 2, . . . (13)

We can now designate the inverse Laplace transform
of function (9). Let us start from the following partial
fractions decomposition:

p(z)

q(z)
=

n∑
j=1

ξjp(ξj)

q′(ξj)(z − ξj)
.

Hence, the formula written below may be derived

L−1

[
p(z)

q(z)

]
(t) =

n∑
j=1

p(ξj)

q′(ξj)
eξjt

=
n∑

j=1

ξjp(ξj)

−Bn(1 + Cξj)
eξjt

=
∞∑
k=0

tk

k!

n∑
j=1

ξk+1
j p(ξj)

−Bn(1 + Cξj)

=
(12)

−1

Bn
[
A
n + (−C)−n+1

]
×

∞∑
k=0

tk

k!

n∑
j=1

ξk+1
j p(ξj)

[
A+

n−1∑
r=0

(−C)−rξn−1−r
j

]

=
−1

Bn
[
A
n + (−C)−n+1

] ∞∑
k=0

tk

k!

N∑
s=0

αsSk+1+s,

(14)

where coe�cients αs are determined by the relation

p(z)

[
A+

n−1∑
r=0

(−C)−rzn−1−r

]
:=

N∑
s=0

αsz
s

and N := n− 1 + deg p. Furthermore, we have
n∑

j=1

ξk+1
j p(ξj)

−Bn(1 + Cξj)
=

M∑
s=0

βsTk+s,

as long as p(z) =
∑M

s=0 βsz
s which, in consideration

of (14), generates the following identity:

−Bn

[
A

n
+ (−C)−n+1

] M∑
s=0

βsTk+s =
N∑
s=0

αsSk+1+s.

(15)

At the end of this brief discussion we would like to no-
tice two facts concerning the power series and recurrence
equations discussed in this paper. First theorem is re-
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lated to the radius of convergence of series (14). Second
theorem enables to state, in some cases, when the recur-
rence sequence {Sn}∞n=0 (formula (11)) is bounded.
Theorem 1. Let {Tn}∞n=0 ⊂ C be a nontrivial linear

recurrence sequence. Then the power series
∑∞

n=0 Tnz
n

has the positive radius of convergence. More precisely, if
the sequence {Tn}∞n=0 has the following Binet form:

Tn = α1(n)z
n
1 + α2(n)z

n
2 + α3(n)z

n
3 + . . .+ αk(n)z

n
k ,

where αj is a complex polynomial for every j = 1, 2, . . . , k
and |z1| ≥ |z2| ≥ |z3| ≥ . . . ≥ |zk|, then from the Cauchy�
Hadamard formula we deduce that value of the radius
of convergence of the power series

∑∞
n=0 Tnz

n is equal

to |z1|−1 (for the power series
∑∞

n=0
Tn

n! z
n the radius of

convergence is equal to in�nity).
Referring to the known Theorem presented in [2] (giv-

ing the necessary and su�cient condition that all the
roots of given polynomial from C[z] lie inside of the
unitary circle), it is worth to notice some special case
of this Theorem and its connection with our trinomial
zn +Az +B (see [6, 7]):
Theorem 2. Suppose αj ≥ 0, 1 ≤ j ≤ k. All the

complex roots of polynomial

zk − α1z
k−1 − . . .− αk

have moduli smaller than 1 if and only if α1+. . .+αk < 1.

4. Conclusion

The formula and method of its generating, presented
in this paper, were confronted, among others, with [4, 5,
8�12]. However, it seems like the formula is completely
new and original.
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