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The application of pattern recognition methodology within chemistry, biology and other science domains,
especially in security systems is becoming more and more important. Many classi�cation algorithms are available
in literature but decision trees are the most commonly exploited because of their ease of implementation and
understanding in comparison to other classi�cation algorithms. Decision trees are powerful and popular tools
for classi�cation and prediction. In contrast to neural networks, decision trees represent rules, which can readily
be expressed so that humans can understand them or even directly use in a database. In this paper we present
an algorithm of construction of decision trees and a classi�cation rule extraction based on a logical relationship
between attributes and a generalized decision function. Moreover, correctness and e�ciency of the algorithm
was experimentally validated in a terahertz system, where spectra of explosives were measured in re�ection
con�guration.

PACS: 42.81.Bm, 42.81.Cn, 42.81.Dp

1. Introduction

The terrorist threats have been increasing worldwide
during the last decades. Media reports about explosions
have become common place, with the greatest threat em-
anating from suicide bombers in crowds and car bombs in
tra�c. The societal, economic, and political sphere are
interested in having all technological options exhausted
to prevent such attacks. So far, no stand-o� detection
devices are available that will detect potential assassins
from a safe distance [1]. In the �eld, well-trained sni�er
dogs are the best alternative for sensing explosives re-
motely, albeit at distances of no more than a few meters.
Portal technologies and sampling detection systems are
unsuited for stand-o� detection. The terahertz (THz)
region of electromagnetic spectrum o�ers an innovative
sensing technique that provides information unavailable
in other conventional methods. The use of T-rays, or
terahertz radiation, to identify substances by their spec-
troscopic �ngerprints is a rapidly moving �eld.
In the last few years, a number of researchers including

our collaboration have assembled databases of terahertz
(THz) time-domain spectroscopy (TDS) absorption and
re�ectance spectra from bulk explosives. While this was
a necessary and important step in demonstrating the fea-
sibility of THz TDS for explosives detection, the goal of
our research is to develop system based on automatic
recognition in real time at stando� distance. The dom-
inant approach is presently terahertz time-domain spec-
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troscopy. However, a key problem is that ambient water
vapour is ubiquitous and the consequent water absorp-
tion distorts the T-ray pulses. Water molecules in the
gas phase selectively absorb incident T-rays at discrete
frequencies corresponding to their molecular rotational
transitions. This situation, therefore, motivates the need
for an optional alternative method for reducing these un-
wanted artefacts.
Ambient water vapour is commonly removed from the

T-ray path by using a closed chamber during the mea-
surement. Yet, in some applications, a closed chamber is
not always feasible.
In the main body of this paper we described the

methodology of computation of the populations varia-
tions of explosives and classi�cation based on decision
trees. The paper is organized as follows. Initially, the
population of compounds is obtained by deformed �pure�
spectra using the complex frequency response of water
vapour modelled from a spectroscopic catalogue (soft-
ware HITRAN). Then using decision tree for feature se-
lection and classi�cation was discussed.

2. Background

To identify potential suicide bombers e�ectively there
should be met low false alarm ratio and detectability of
wide range di�erent explosive formulation requirements
inter alia. Together, these performance requirements
demonstrate clearly the technical challenge involved in
developing suitable measuring systems for the stand-o�
detection of explosives. The methods used up to now still
require approaching the suspicious object in order to per-
form the analysis with great risk for operator. A suitable
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analytical instrument should be able to detect and iden-
tify at a stand-o� distance the explosive materials with a
reasonable level of con�dence in order to o�er real-time
results maintaining a security distance for the operator.
It has been recognized that laser-based spectroscopy is
the only technique, which may be potentially capable to
stando� detection of minimal amounts of explosive ma-
terials in real �eld scenarios [1]. After acquiring a mea-
surement of terahertz pulse interacting with a sample,
it is compared to a reference terahertz pulse (not inter-
acting with the sample) and the material's optic prop-
erties are extracted. These properties (absorption, re-
�ectance) manifest itself as absorption peaks (or change
the re�ectance) at speci�c frequencies.
However, conventional THz-TDS is dominated by

manual analysis. The operator compares the peak po-
sitions to positions of known peaks to identify a sample.
But, the reliance on human input is questionable because
of few reasons [1]. The most important is, that for large
data sets, the manual process can be slow. Performance
automated identi�cation systems of samples with tera-
hertz spectrometry is a purpose of many research teams
all over the world. In the literature [2] several attempts
have been performed. These involved techniques such as
linear correlation, the Mahalanobis distance, neural net-
work, least-squares, and principal component analysis.
Among these classi�cation algorithms mentioned before
decision tree is the most commonly used because of that
it is easy to understand and implement [2�4]. Another
problem is in�exibility to changes in environment. In
practical detection system THz radiation is directed at
a target, from which it is re�ected back measured by a
detector (Fig. 1).

Fig. 1. Typical remote threat detection system geom-
etry.

However, this radiation has to propagate through the
atmosphere before reaching the target. It will then be
re�ected and scattered by possibly rough and irregularly
shaped explosives before returning to the detector. When
T-rays propagate through an atmosphere, �uctuations af-

ter the main pulse in the time domain are observed. So,
T-ray spectroscopy of a sample, in open air, therefore
often results in a combination of the sample's spectral
features and water vapour resonances in the frequency
domain. These e�ects are generally undesired, since they
may mask critical spectroscopic data. Consequently, the
target spectra must be su�ciently strong to be able to
overcome the signal attenuation. Using only reduced
information from spectra (the most informative set of
frequencies and corresponding with them re�ectance �
called feature space), which not defeated by atmosphere
attenuation is possible solution. Feature selection is sig-
ni�cant step to improve existing algorithms for auto-
mated classi�cation of explosives in stand-o� THz sys-
tems. The decision tree both for obtaining a feature space
and for classi�cation examples is discussed.

3. Description of the approach

3.1. Acquiring data set

Time domain spectroscopy is commonly used tech-
nique in THz range. We have carried out measures of
re�ectance spectra R(ω) of �ve compounds in two re-
�ection con�gurations � specular, where the sample is
placed close to the detector with incidence and collec-
tion angle of the laser beam equal to 45◦, and stand-o�
in the compartment purged with dry air at the distance
30 cm and incident angle equal to 5◦ [4]. The 20 ps
wave form is converted to the frequency domain via the
Fourier transform. The usable frequency band, used in
our analysis, is 0.3÷2 THz. For each material of interest,
re�ectance measurements are made in speci�c frequency
range. Data R(ω) consist of pairs {(ωk, rk)}, k = 1,
2, . . . , K, where ωk is a frequency and rk is a measure-
ment of re�ectance at that frequency. Thus, we have
L = 45 column vectors (R(ω)1, R(ω)2, . . . , R(ω)L), each
has N = 281 frequency components and represents a
THz re�ectance spectrum (9 spectra per material � 3
spectra from pellet measured in specular geometry and 3
from a second, thicker pellet and 3 spectra from stand-o�
geometry [5, 6]). In order to get sample spectra the vari-
ation in measured re�ectance due to propagation in free
air, we used set of 11 numerical atmosphere transmission
models H(ω) = {(ωk, hk)}, based on HITRAN software
(di�erent distance and humidity) to predict the shape of
spectra X(ω) = {(ωk, xk)} deformed by the atmosphere.
A calculation of shape of spectra X(ω) of measured re-
�ectance spectra R(ω) may be expressed as follows:

X(ω) = H(ω) ·R(ω). (1)

Thus, we obtained 495 re�ectance �measurement� vec-
tors X = {X1, X2, . . . , Xn}, n ∈ ⟨1, 495⟩, 99 spectra per
materials, has N = 281 frequency components and repre-
sents THz re�ectance spectra from RDX, sugar, salicylic
acid, picric acid and para-aminobenzoic acid (PABA)
(Fig. 2). Prior to applying the pattern recognition tool
extensive pre-processing was performed. Samples vector
Xn were normalized to remove sample to sample system-
atic variation usually associated with the total amount
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of sample, by the formula

Xn =

max∑
i=1

|Xp| . (2)

Each element in the vector is divided by the constant
obtained by the sum of the absolute value of all of the
i entries in the vector Xp. These data sets were entries
for algorithms for feature selection based on decision tree
(Fig. 3) which is described in Sect. 3.3.

Fig. 2. In�uence of water vapour on re�ectance spec-
tra: (a) RDX, (b) picric acid, (c) salicylic acid,
(d) sugar.

Fig. 3. Feature selection algorithm based on decision
tree and random training data sets.

3.2. Properties of decision trees

Decision tree is characterized by few properties. The
most interesting strengths of this method is that decision
trees generate understandable rules (result depends on
training set) without requiring much computation. Addi-
tionally, decision trees provide a clear indication of which
�elds are most important for prediction or classi�cation
but results depend on input data sets. Due to the unsta-
ble nature of decision trees, they are ideal for purpose of
strengthening the classi�cation algorithm. We can use it
to combine outputs of many �weak� classi�ers based on
decision tree to produce a powerful �committee�. This

method called ensemble learning is one of the most pow-
erful learning ideas [6].

3.3. Feature selection algorithm

The idea of �ensemble classi�ers� was used to proce-
dure both providing a better classi�cation accuracy and
reducing the cost of recognition by reducing the num-
ber of features that need to be collected. Random input
selection was used in order to promote further diversity
by selecting random s subsets of m-dimensional vectors
to perform the learning task. The m =

√
d = 281 value

was obtained in accordance with [6]. Random split into
training and test subset was applied. The training data
sets were used in building the classi�cation mode, while
test data records were used in validation of the model.
A plot of exemplary result of classi�cation model is found
in Fig. 4. The F2 < 0.985455 represents classi�cation
rule which allowed to classify unknown re�ectance spec-
tra of compound as RDX and PABA or other compound
of �ve class of materials. Attribute F2 correspond with
second of 281-dimensional set of measure frequency.

Fig. 4. Feature selection based on decision tree.

The classi�cation rules {F2, F7, F5, F155} shown
above were obtained by the formula called deviance [7]:

Q(Rk) = −2

u∑
s=1

Ns(k) log2 p(Ps|Pk), (3)

where Ns � number of observation of class compounds
Ps, s ∈ ⟨1, u = 5⟩ in Rk classi�cation region. The ap-
proach taken here allowed us to obtain the rank the most
interesting, from the classi�cation point of view, mea-
sure frequencies. We have chosen set of eighteen frequen-
cies, which mostly attended in construction classi�cation
model with good prediction accuracy (Table I).

TABLE I

Set of frequencies for construction of feature space.

GHz 654.32 641.74 635.45 648.04 660.07 639.16

No. 1 2 3 4 5 6

GHz 905.99 893.34 666.91 899.7 880.82 887.12

No. 7 8 9 10 11 12

GHz 874.53 868.24 836.78 824.20 861.95 673.20

No. 13 14 15 16 17 18



894 R. Ryniec, P. Zagrajek, N. Paªka

3.4. Experimental setup

The classi�cation of collected signals is often the most
important step in detection and identi�cation systems. It
can be de�ned as assigned unknown class of compounds
P of an observation X to data objects based on rela-
tionship between the data items with a pre-de�ned class
label. To verify classi�cation procedure the experimental
setup was prepared. It allows measurements in real con-
ditions with signal attenuated by water vapour. The lab-
oratory setup based on subset of measure frequencies was
built. The T-ray system was used with tuneable Virginia
Diodes (VDI) source of radiation based on the Schottky
diode achieving radiation power 1 mW�300 GHz to 1 nW
−950 GHz, and pyroelectric radiometer cooperating with
DSP Lock-In-software.

Fig. 5. Focused THz radiation beam.

Fig. 6. Results of experimental setup: (a) RDX, (b) pi-
cric acid, (c) salicylic acid, (d) sugar (measure points �
black, blue line � interpolated curve of spectra, red line
� spectra obtained by TDS system).

The incident angle of THz beam onto the sample's sur-
face is 45◦. A polyethylene lens with 75 mm focal length
was used to image the target onto a sensor (19.6 mm2).
To ensure the best acquisition quality system was cal-
ibrated before to get on sample and detector radiation

beam focused into 19.6 mm2 area. The power distribu-
tion of laser beam is shown in Fig. 5.
We have carried out measures for the samples as were

used in TDS system. Then, re�ectance was obtained. We
used variation of measurements as a separate observation.
Thus, we obtained data set containing 919 re�ectance
measurement vectors of 6 classes of compounds. A plot
of results compared with TDS results is found in Fig. 6.
As it is shown, we can �nd quite good agreement between
measured data (blue) and predicted (red line).

4. Results and discussion

After preparation of �feature space� we have obtained
collection of spectra based on experimental setup and real
weather conditions. The number of observations of each
class of compounds is shown in Table II. We additionally
measured mixture of TNT and HMX explosives.

TABLE IICollection of observations.

Comp. Sugar PABA Salic. Pic. RDX TNT/HMX

No. 119 181 135 152 135 197

Records were randomly divided into training and test
sets. Then, decision tree algorithm was used to classify
observations. Application of decision tree both for fea-
ture selection and classi�cation con�rmed advantages of
this technique for data analysis.
In our experiment we reached classi�er yields 3% error

on the test set. Table III shows results of classi�cation.
The rows represents number of observations of class, and
columns give us result of classi�cation. For example, for
39 observations of sugar class, 34 were classi�ed correctly
and 5 were recognized as a PABA class of materials.

TABLE IIIResult of classi�cations.

Sugar PABA Salic. Picr. RDX TNT/HMX

Sugar 34 5

PABA 58 1

Salic. 46

Picr. 1 50

RDX 47

TNT/HMX 64

Fig. 7. Clustering observation based on decision trees
algorithm.
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Another interesting properties were observed. Using
two or three classi�cation rules we can make procedure
similarity to other discrimination methods like linear dis-
criminant analysis (LDA) or principle component anal-
ysis (PCA). A plot of clustering observation is found in
Fig. 7. Classi�cation rule F3 < 0.964 allowed to separate
the TNT/HMX observations, for example.

5. Summary

The samples of RDX, sugar, picric and salicylic acid
and PABA were pressed into pellets in pure form, and
the pellets were measured in normal-incidence and in 5◦

re�ection geometry using stand-o� purged box in TDS
system. The spectra were applied to obtain collection of
predicted deformed spectra by numerical models of at-
mosphere. In this article we presented e�ectiveness of
decision tree method for classi�cation THz spectra. The
results of our investigation con�rmed �tness for purpose

of classi�cation THz spectra especially for stand-o� de-
tection system.
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