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In this paper we present our theoretical approach for the description of the light guidance in photonic
liquid crystal �bers. In particular, we focus on the numerical methods allowing for a full implementation of the
liquid crystals properties (i.e., including their optical anisotropy and molecular orientation), with a �nal target
in characterizing photonic liquid crystal �bers with accessible computational e�ort. For this purpose suitable
analytical formulae required for a full-vectorial description of the optical modes in photonic liquid crystal �bers
have been derived. In addition, computational schemes allowing for numerical implementation of theoretical
formulations (with the use of the �nite-di�erence scheme) have been developed, validated and optimized. Their
numerical convergence has been checked for di�erent structures, as well as for di�erent input parameters (e.g.,
grid-size). Obtained results have been compared to those analytically calculated, known from literature and/or
got with use of commercial software. Moreover, the implemented schemes have been examined in accordance with
experimental tests performed on the photonic liquid crystal �ber of interest.
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1. Introduction

Photonic crystal �bers (PCFs) are the special class of
2D photonic crystal structures with cylindrical symme-
try, extended homogeneously over the third dimension
(i.e., propagation axis) [1�3]. As shown in Fig. 7a, typi-
cal cross-section of PCF can be divided into two regions
� the circular core and the annular cladding. The lat-
ter generally consists of periodically distributed air-holes
(forming a photonic lattice), while the core region can
either be formed from solid materials as in conventional
�bers, or remain hollow in some designs (not presented
here). Possible modi�cation of the �ber geometry (e.g.,
change in size and location of the air-holes) gives addi-
tional degree of freedom in engineering the characteristics
of the optical �bers. It determines that in addition to the
index-guiding mechanism (de�ned also as a modi�ed to-
tal internal re�ection, mTIR) � when light is spatially
localized in regions with higher refractive indices (e.g., in
a solid core of the holey microstructured optical �bers) �
PCFs can also propagate light as an e�ect of the photonic
bandgap (PBG) guiding (e.g., in a hollow-core PCFs).
In�ltration of the air-holes with gaseous and liquid me-
dia leads to even more extraordinary properties of PCFs.
Speci�cally, the concept of �lling them with liquid crys-
tals (LCs), resulting thus in a new type of optical �ber,
has recently gained signi�cant amount of the scienti�c
attention [4�8].
These particular photonic structures are often referred

to as photonic liquid crystal �bers (PLCFs) [4, 5], liquid
crystal-photonic crystal �bers (LC-PCFs) [6], or liquid
crystal-photonic bandgap �bers [7]. LCs are anisotropic,
and, in most cases, their averaged refractive indices
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are higher than that of silica. The in�ltration with
LCs allows to convert an initially index-guiding PCF
with a solid (glass) core to a PBG-guiding PLCF. How-
ever, by substituting the silica substrate with materials
with higher refractive indices (e.g., lead�bismuth�silicate
glass [8]) or choosing LC with lower refractive index (e.g.,
1550 LC mixture [9]), it is also possible to achieve index-
-guiding mechanism in PLCF of the same geometry.
Furthermore, the refractive indices of LCs can also

be engineered and/or dynamically adjusted so that both
guiding mechanisms are possible within the same PLCF
structure [5]. High tunability of optical properties of
PLCFs, achieved by applying external factors like tem-
perature, strain, pressure, electric or/and magnetic �elds,
as well as by the light-beam itself (e.g., when nonlinear
e�ects are considered), brings various potential applica-
tions to the �eld of �ber optics [4�8, 10, 11]. However, it
has to be underlined that owing to their quasi-crystalline
and non-uniform nature, LCs introduce further challenge
in theoretical and experimental characterization of the
corresponding �ber optics elements and components.

2. Model development

Conventionally, the most well-known and the simplest
model for the optical �ber characterization is the analyt-
ical scalar-�eld formulation with linearly polarized (LP)
�eld approximation in which the vector �elds are decou-
pled into individual scalar �elds [12]. It provides fairly
straightforward and accurate characterization of practi-
cal optical and telecommunication �bers (i.e., step-index
geometries with small index-contrast), but fails for more
complicated structures (for which a vector-�eld formu-
lation is required). In particular, when microstructured
optical �bers (MOFs) and photonic crystal structures are
incorporated, analytical solutions are di�cult to obtain,
if not impossible.

(880)
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Fortunately, nowadays, thanks to the advance of com-
puter science and computational physics, various types of
numerical methods for characterization of PCFs could be
developed [13]. Among possible modeling schemes, the �-
nite di�erence method in frequency domain (FDFD) has
been chosen in this work. In particular, both scalar-�eld
and vector-�eld FDFD schemes have been implemented
to characterize the PLCFs of interest. Speci�cally, taking
into consideration the computational accessibility and ef-
�ciency, a special form of a vector-�eld FDFD has been
formulated. Proposed solution is based on the scheme
shown in [14], while extending its use to optical �bers
with more general material anisotropy.

2.1. Finite di�erence method in frequency domain

Typically, FDFD schemes involve all four Maxwell
equations which relate vector �elds (E, H, D, B) with
their derivatives (∂x, ∂y, ∂z, ∂t). While only �elds of a
�xed angular frequency (ω0) are considered (as it is in
the frequency domain methods), the time derivative re-
sults in direct multiplication by − iω0. Moreover, based
on the mode theory for electromagnetic �elds in optical
waveguides (where modes are mathematically de�ned as
the possible solutions of the wave equations with con-
stant �eld distributions along the propagation axis), the
z-derivative is also reduced to direct multiplication (by
iβ, where β is propagation constant). Eventually, the re-
maining x- and y-derivatives are approximated by �nite-
-di�erence formulae and with all derivatives deduced, the
four Maxwell equations (represented in the form of wave
equations, where second-order derivatives with respect to
the transverse spatial coordinates appear) may be solved
numerically for a speci�c geometry and optical properties
of the medium [15�18].

On the other hand, in [14] authors �rst proposed a
more compact FDFD scheme incorporating Yee's stag-
gered mesh incorporated (which is widely used in FDTD
schemes owing to its e�ectiveness) [19] to study the
modal characteristics of MOFs. Numerous publications
followed such FDFD scheme and extended its use to even
more general �ber geometries [20�22].

2.2. Scalar��eld FDFD

When describing modes propagating in optical waveg-
uides, the Maxwell equations are very often introduced
in the further reduced form where the vector nature of
the electric and magnetic �eld/induction is dropped, re-
sulting thus in the scalar wave formulation. The latter is
su�cient when there is no coupling among electric and
magnetic �eld components, allowing thus for the tensor
notation of the E- and H-�elds to be neglected. For
isotropic media, within a linear regime, and with a cer-
tain time and propagation direction dependence of the
�elds (as mentioned in previous section), the scalar-�eld
eigenvalue problem is described by the following equa-
tion:

(
∂2

∂x2
+

∂2

∂y2
+ k20ε

)
ET = β2ET, (1)

where ε is (relative) electric permittivity and the T sub-
script denotes the transverse components of the electric
�eld. For the magnetic �eld an eigenvalue problem equa-
tion takes identical form (with HT ≡ ET).

Fig. 1. Use of the three-point FD for discretization of
the scalar-�eld eigenvalue problem with corresponding
global matrix [whose elements are given by Eq. (2)] (a).
In the matrix arrangement applied, the horizontal bor-
ders (dashed lines) represent the boundaries in the
y-direction, while the boundaries in the x-direction are
colored in grey (b). Sparsity of the FDFD global ma-
trix with respect to the permittivity tensor form [18] (b).
The black squares represent non-zero values to be stored
in the sparse matrix. The fewer the black squares, the
less demanding the memory requirement is.

One of the possibilities to represent the second-order
derivatives with respect to the transverse directions is to
use the three-point central �nite di�erences (FD), allow-
ing for the eigenvalue problem discretization (where ∆x
and ∆y are the step/grid sizes in x- and y-direction, re-
spectively):(
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∆y2

)
$

Ex,y+1 = β2Ex,y . (2)

At each point of the mesh grid in such de�nition, E(x, y)
is associated with itself and another four neighboring
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points, as represented by the global matrix shown in
Fig. 1a [with nonzero elements represented by the pic-
tograms introduced in Eq. (2)]. From the eigenvalues
obtained it is possible to calculate the e�ective refrac-
tive indices of the modes (while neff = β/k0, where k0 is
a wavevector) and the eigenvectors represent the modal

�eld spatial patterns. The full size of the global matrix
is (M × N)2, where M and N are the grid points used
to represent the �ber geometry in the x- and y-direction,
respectively. Fortunately, with the development of sparse
matrix packages, it is possible to reduce signi�cantly the
memory requirement for the global matrix has to be
stored (see Table I).

TABLE I

Complexity of the FDFD eigenvalue problem and size of the global matrix (estimated in
case of sparse matrices) with respect to the permitivity tensor form applied.

Full Sparse

scalar-�eld (N ×M)× (N ×M) N ×M × 5

isotropic (vector-�eld) N ×M × 2× 5

diagonally anisotropic (N ×M × 2)× (N ×M × 2) N ×M × 2× 9

transversely anisotropic N ×M × 2× 16

arbitrarily anisotropic (N ×M × 4)× (N ×M × 4)

It is worth mentioning that despite its simplicity, some
authors still apply the scalar-�eld FDFD for the modeling
of MOFs [23].

2.3. Material anisotropy in FDFD

To date di�erent FDFD schemes allowing for a study
on light propagation in optical structures with material
anisotropy (characterized by di�erent forms of permit-
tivity tensor, as given by Eqs. (3)-(6)) have been suc-
cessfully developed. Four possible forms of permittivity
(second-rank) tensors, with di�erent complexity in the
numerical problem to be computed, are shown below.

isotropic ¯̄ε =

 ε 0 0

0 ε 0

0 0 ε

, (3)

diagonally anisotropic ¯̄ε =

 εxx 0 0

0 εyy 0

0 0 εzz

, (4)

transversely anisotrpic ¯̄ε =

 εxx εxy 0

εyx εyy 0

0 0 εzz

, (5)

arbitrarily anisotropic ¯̄ε =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

. (6)

For example, computation methods which account for
the diagonal anisotropy in optical �bers [14], the trans-
verse anisotropy in dielectric waveguides [18], and the
general anisotropy in LC-core waveguides [22] have been
reported. Some of the formulations are based on the
curl Maxwell equations with the �rst-order derivatives
applied in the �nite di�erence scheme [14, 22]. It is on
the contrary to other solutions in which the divergence
Maxwell equations are also introduced resulting thus in
the �nite di�erence schemes with second-order deriva-

tives applied [18]. Numerical scheme presented here is
one based on the vector-�eld FDFD proposed in [14]
with its simplicity and the use of the Yee staggered mesh
(which reduces the number of grid points by a factor
of two for a �xed �ber geometry, which is bene�cial in
the large and complex structures characterization) as the
main motivations for this particular method application.
In particular, by introducing some correction terms, we
have extended the primary FDFD scheme to be capable
for the transverse material anisotropy (e.g., in uniaxial
nematic LC shown in Fig. 2, with elements of the per-
mittivity tensor in uniaxial nematic LC as a function
of orientation angles given in Eqs. (7) below) to be ac-
counted.

εxx = n2
o + (n2

e − n2
o) sin

2ϕ cos θ,

εxy = εyx = (n2
e − n2

o) sin
2ϕ sin θ cos θ,

εxz = εzx = (n2
e − n2

o) sinϕ cosϕ cos θ,

εyy = n2
o + (n2

e − n2
o) sin

2ϕ sin2θ,

εyz = εzy = (n2
e − n2

o) sinϕ cosϕ sin θ,

εzz = n2
o + (n2

e − n2
o) cos

2ϕ. (7)

Fig. 2. Elements of the permittivity tensor in uniaxial
nematic LC can be represented as a function of orienta-
tion angles θ and ϕ.

2.4. Vector-�eld FDFD

While extending the FDFD formulation proposed by
Zhu and Brown (with the staggered Yee mesh con�gura-
tion applied for the �nite di�erences incorporation) [14]
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by assuming more general form of the permittivity ten-
sor � i.e., with the transverse material anisotropy con-
sidered, some additional cross-terms (boxed in Eqs. (9)�
(13)) appear in the eigenvalue equations to be solved. In

Fig. 3. The staggered Yee mesh con�guration for the
vector-�eld FDFD implemented in this work. As an ex-
ample the boundary of the regions with permittivities εa
and εb is presented, where the region with εa is shaded
in gray. The area enclosed by the dashed white line is
considered for index-averaging procedure described in
Sect. 2.5 (where f is the ratio of the region with the
electric permittivity εa to this area).

this case, two eigenvalue equations (written in the ma-
trix forms) with respect to the electric and magnetic �eld
read as follows (please note that details on the algebra
in arriving at the global equations were skipped due to
limitations of this communication):

P

[
Ex

Ey

]
=

[
Pxx Pxy

Pyx Pyy

][
Ex

Ey

]
= β2

[
Ex

Ey

]
, (8)

where P is the global matrix for the electric �eld, with
the sub-matrices

Pii = − 1

k20
Ui

(
I

εzz

)
VjViUj +

[
k20I + Ui

(
I

εzz

)
Vi

]

×
[
εii +

1

k20
VjUj

]
+ Ui

(
I

εzz

)
Viεji , (9)

Pij = Ui

(
I

εzz

)
Vj

[
εii +

1

k20
ViUi

]
− 1

k20

[
k20I + Ui

(
I

εzz

)
Vi

]
VjUi

+ k20εij + Ui

(
I

εzz

)
Viεij , (10)

and similarly

Q

[
Hx

Hy

]
=

[
Qxx Qxy

Qyx Qyy

][
Hx

Hy

]
= β2

[
Hx

Hy

]
, (11)

where Q is the global matrix for the magnetic �eld, with
the sub-matrices:

Qii = − 1

k20
ViUjUi

(
I

εzz

)
Vj +

[
εjj +

1

k20
ViUi

]

×
[
k20I + Uj

(
I

εzz

)
Vj

]
+ εjiUi

(
I

εzz

)
Vj , (12)

Qij = −
[
εjj +

1

k20
ViUi

]
Uj

(
I

εzz

)
Vi +

1

k20
ViUj

×
[
k20I + Ui

(
I

εzz

)
Vi

]

+

[
−k20εji − εjiUi

(
I

εzz

)
V

]
, (13)

where i ≡ (x, y); j ≡ (x, y) and i ̸= j. Please
note that when εxy = εyx = 0, the sub-matrices in
Eqs. (9), (10), (12), (13) reduce to those in [14]. The
�nite-di�erence sub-matrices introduced in Eqs. (9)�(13),
whose form depends on how the two-dimensional �elds
are arranged into one-dimensional vectors for matrix
computation (with the arrangement procedure identical
to the �eld-to-vector assignment applied for the scalar-
-�eld FDFD with its global matrix shown in Fig. 1a).
The form of the �nite-di�erence sub-matrices (U, V ) is
shown in Eqs. (14)�(17).

Ux =
1

∆x



�1 1

−1 1

. .

. .

−1 1

−1


, (14)

Uy =
1
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�1 1

�1 .

. 1

.

�1

�1


, (15)

Vx =
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−1 1
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−1 1
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Vy =
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1
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. 1

−1 1


. (17)
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The FD matrices also depend on the boundary condi-
tions speci�ed. In particular their elements boxed in Eqs.
(14)�(17) may take value of zero when speci�c (Dirichlet
and/or Neumann) boundary conditions are considered.
Please note that also here there may exist zeros in the
o�-diagonal values of the global matrix which represent
the boundaries in x-direction, as it was given by the gray
shades in Fig. 1a.
After solving the eigenvalue problem de�ned as above,

it is possible to obtain the spatial distributions for trans-
verse components of the electric and magnetic �eld. The
corresponding longitudinal components can be then cal-
culated from the following equations:

ik0Hz = UxEy − UyEx, (18)

− ik0εzzEz = VxHy − VyHx. (19)

As mentioned before, the �rst-hand results obtained in
FDFD simulations are the e�ective refractive index and
the modal �eld distribution, which correspond to the
eigenvalue and the eigen�eld (eigenvector), respectively.
It is important to note that with the vector-�eld scheme,
it is also possible to obtain polarization information re-
garding the eigen�eld with di�erent parameters such as
birefringence, polarization mode dispersion (PMD), po-
larization extinction ratio, and dichroic ratio possible to
be derived.

2.5. Improvement of FDFD performance

In order to improve the performance of FDFD schemes,
some additional (numerical) techniques can be applied.
In analyzed case, the staggered Yee mesh has been al-
ready implemented in the FDFD scheme in order to re-
duce the number of grid points needed while maintaining
high accuracy. Index-averaging is another simple but use-
ful technique for improvement of the FDFD performance
(especially for cases when the resolution for a spatial dis-
cretization is low or insu�cient). It has been proven to
increase greatly the convergence of the numerical simu-
lations. The main idea of the index-averaging is to rep-
resent a spatial refractive index distribution with the use
of more points, especially in the regions of the refrac-
tive index changes. In this work, index-averaging is im-
plemented through an interpolation technique � specif-
ically, the refractive index in a speci�c grid-point (of the
Yee mesh applied) is approximated by the interpolation
of the sub-grid points, the assignment of their values ac-

cording to the original �ber geometry, and the calculation
of their average. The accuracy of such approximation de-
pends on the interpolation factor Γ , which is a positive
(even) integer that speci�es how many additional sub-
-grid points are used. In particular, when Γ = N is
applied, (N − 1) additional points are assigned in be-
tween the original grid points, and the refractive index
pro�le of the area with (N+1)-by-(N+1) points centered
around the original grid point is averaged and assigned
to the grid point. It means that for Γ = 10 (typically
applied in this paper) refractive index in each grid point
is obtained as an average over 121 sub-grid points.
In addition, some spurious (non-physical) modes can

be e�ectively eliminated from prospective solutions by
performing: (i) correlation between the obtained eigen-
�elds and the presumed modal �elds; (ii) edge-cutting,
which is adequate to the replacement of the silica out-
side the photonic lattice by air, and can be still regarded
physical for the fundamental core-guiding modes.

3. Veri�cation and benchmarking

of proposed schemes

One method that can be applied in order to verify the
correctness of the implementation of the proposed FDFD
scheme is to compare the numerical results with good
references, which are often analytical results. The idea
is to use simple step-index �ber geometries (particularly
those with low index-contrast) for which modal analyses
can be performed analytically, and then extend the use
of the validated numerical schemes to more complicated
structures (if not solved analytically then with modal
characteristics well described in literature). In addition,
numerical veri�cation of proposed schemes can be per-
formed. The most important results of this veri�cation
method are the convergence curves which are typically
represented as the functions of either the step size (grid-
-mesh size) or the size of the calculation window. Fast
and steady convergence is expected for a good simulation
scheme, as it represents smaller uncertainty of the simu-
lation. On the other hand, although the uncertainty may
be minimized, there is still no information regarding the
calculation error. Similarly, good convergence against
the size of the calculation window may suggest that the
simulation results are intrinsic, but does not give any in-
formation on whether the intrinsic results are correct.

TABLE IIParameters of the optical structures taken for the benchmarking.

Parameters SMF HC-SIF Parameters HoF

wavelength, λ 1.55 µm 1.5 µm wavelength, λ 1.5 µm

core diameter, d 8.2 µm 6 µm pitch, Λ 2.3 µm

corerefractive index, ncore 1.449504 1.45 hole-diameter, d 1.0 µm

cladding refractive index, nclad 1.444304 1 cladding refractive index, nsilica 1.45

refractive index reference, ∆n 0.360035% 45% hole refractive index, nair 1

normalized frequency, V 2.038674 8.796459 calculation window 6Λ = 13.8 µm
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In order to raise the con�dence level of the numeri-
cal simulations performed, the proposed FDFD schemes
have been tested for various �ber geometries according to
the (analytical and numerical) veri�cation methods de-
scribed above. In particular, the performance of the nu-
merical tools has been checked for: (i) a single-mode �ber
(SMF), (ii) a step-index �ber with high index-contrast
(HC-SIF), and (iii) photonic crystal �ber (holey �ber,
HoF). Parameters of the optical structures taken for
the benchmarking are speci�ed in Table II. Results ob-
tained are described in Sects. 3.1�3.3 and summarized
in Sect. 3.5. Please note that in all cases grid-sizes in
both transverse directions are assumed to be equal (i.e.,
∆x = ∆y). An average factor Γ of 10 is taken in all cases
where refractive-index-averaging technique was applied.

3.1. Single-mode �ber

A standard single-mode telecommunication �ber
(SMF), with parameters de�ned in Table II, has been
considered as the �rst optical structure for the bench-
marking. Its diameter is smaller, and its minimum ra-
dius of curvature in the structure larger, than those for
a typical PCF, making the simulation conditions to be
less stringent. With the refractive index-contrast which
is low, the SMF can be analyzed analytically with the
use of the LP approximation [12]. Speci�cally, e�ective
refractive index for LP01 �ber-mode has been found to
be neff = 1.446535 (calculated with a step size of 10−8

Fig. 4. E�ective refractive index of the fundamental
mode obtained without (a) and with (b) index averaging
as a function of number of grids for �xed size of the
calculation window. Results for scalar and vector (both
for E- and H-formulation) version of FDFD scheme are
compared. Gray rectangle in (a) represents a range of
e�ective refractive index from part (b).

for the normalized propagation constant) and it has been
taken as the reference value for the numerical simulations
performed with FDFD. Convergence analyzes with re-
spect to the grid step-size for �xed size of the calculation
window (32 µm × 32 µm) have been performed (Fig. 4a).
When index-averaging technique is applied, the conver-
gence reaches the order of 10−6 for number of grids more
than 250, while this value without index-averaging is al-
most 2 × 10−5. It proves that the index-averaging tech-
nique improves largely the convergence, especially when
the resolution in space discretization is low. For 250
grids, the spatial resolution is about 0.13 µm, which in
analyzed case is roughly 1/12 the wavelength. This crite-
rion, together with convergence of at least 10−6, has been
considered as a minimum requirement to be ful�lled in
performed simulations. However, it should be noted that
in some cases such criterions are not quite accessible due
to the limited computation power (memory limitations).
By comparing the results with the analytic value for

LP01(neff = 1.446535), we obtain the errors of simula-
tions, which is 10−6 [relative error (RE) of 0.7 ppm] for
the scalar-�eld FDFD, and 5× 10−6 (RE = 3.5 ppm) for
the vector-�eld FDFD. Less agreement obtained for the
latter ensure from the speci�city of the LP approximation
applied to get the reference value. It is worth to note that
the E- and H-formulations do not make any di�erence
in the vector-�eld FDFD � the two curves representing
them in Figs. 4a,b almost overlap with each other.

3.2. High index-contrast step-index �ber

While for optical �bers with a high index-contrast, the
scalar approximation is no longer valid, an HC-SIF is
a good candidate to show the discrepancy between the
scalar- and the vector-�eld FDFD formulations. The
�ber geometry taken into consideration (with parameters
speci�ed in Table II) is the same as one discussed in [14],
where the reference value of the e�ective refractive index
of the fundamental mode is taken as 1.438604. Setting

Fig. 5. Convergence curves of the e�ective refractive
index for the fundamental mode in the HC-SIF obtained
with scalar- (a) and vector-�eld FDFD (b). Reference
value is taken as 1.438604 [14].
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the calculation window to be 12 µm × 12 µm (the same
as in [14] to ensure that obtained results are comparable),
numerical simulations were performed with both scalar-
and vector-�eld FDFDs (see Fig. 5a, b). The resultant
e�ective refractive indices neff for the fundamental mode
are 1.439054 and 1.438606 (for 1200 grids), respectively.

3.3. Holey �ber

A photonic crystal �ber has been considered as a �nal
optical structure for the benchmarking. A holey PCF
(also described in [14]) belongs to the same type of ge-
ometry as the host PCF of the PLCF of interest. Specif-
ically, analyzed structure is shown in Fig. 6a, with pa-
rameters speci�ed in Table II.

Fig. 6. Scheme of the photonic structure in the form
of the holey �ber (a). Field pattern (|Ex|) for the fun-
damental (core-guiding) mode propagating in the struc-
ture as an e�ect of the modi�ed total internal re�ec-
tion (b). Convergence curves for the fundamental core
mode in the HoF obtained with scalar- and vector-�eld
FDFD (c), (d).

The convergence curves obtained at λ = 1.5 µm for
the fundamental core-guiding mode (whose spatial �eld
distribution (i.e. absolute value for Ex component) is pre-
sented in Fig. 6b) are shown in Fig. 6c, d. Obtained re-

sults are eventually compared with the reference values
in Table III. One concern of the triangular-lattice PCFs
(as analyzed here) is the degeneracy of the fundamental
(core) modes. It has been shown both theoretically [24]
and numerically [25] that, although there exists struc-
tural di�erence along the x- and the y-directions, the
fundamental modes in two orthogonal polarization states
are degenerated (i.e., are characterized by the same e�ec-
tive refractive indices). Simulations performed with use
of the FDFD schemes proposed here also con�rm such
degeneracy.

3.4. Summary on benchmarking of FDFD

To sum up, the scalar- and the vector-�eld FDFD
schemes introduced in this work have been carefully
tested with some exemplary (well-known) �ber geome-
tries with validation concepts based on analytical and
numerical veri�cations. The performance of the FDFD
schemes implemented, with numerical calculations exe-
cuted for 800 grids in each transverse direction (unless it
is marked di�erently) and with the index-averaging tech-
nique applied is summarized in Table IV. It seems that
it can be pushed even further but computational power
(memory requirement, in particular) appears to be a con-
cern regarding the convergence of the simulations.

TABLE III

Reference values of the e�ective refractive index for fun-
damental mode in comparison to simulations results ob-
tained in this work.

Reference Approach Results

[26] LFN 1.42805

[27] FD-BPM 1.42868

[17] FDFD 1.42858

[14] FDFD 1.42868

current work sFDF 1.43026

current work vFDFD 1.42864

TABLE IV

The benchmarking results for the scalar- and vector-�eld FDFD schemes (typically 800 grids
were applied).

Fiber
Reference

(fundamental
core mode)

Scalar-�eld
FDFD

Relative
error

Vector-�eld
FDFD

Relative
error

single-mode �ber 1.446535 1.446534 < 1 ppm 1.446530 4 ppm

high index-contrast
step-index �ber

1.438604 1.439054 313 ppm
1.438608
1.4386065a

3 ppm
2 ppma

holey �ber 1.42805 1.43026 0.2%
1.428640
1.428639a

413 ppm
412 ppma

a for 1200 grids.

In the tests performed, the limitations of the scalar-
-�eld formulation have been shown quantitatively, as well
as its di�erence to the vector-�eld calculation, and the

errors of the FDFDs compared to analytical values. The
proposed FDFD schemes give satisfactory results for the
single-mode �ber, HC-SIF, and photonics crystal �ber
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geometries which were tested. Speci�cally, when vector-
-�eld FDFD is applied, relative error of 2 ppm is observed
for neff of the fundamental mode in HC-SIF. For the holey
�ber geometry, the result of the vector-�eld FDFD di�ers
by 6 × 10−4 (RE = 413 ppm) from that of the localized
function method [26]. Moreover, it should be noted that
for complex structures results obtained with scalar-�eld
FDFD have larger errors, with 313 ppm for HC-SIF and
0.2% for HoF, which are approximately 100 times and 5
times larger than with vector-�eld FDFD, respectively.

4. Results for the PLCF of interest

4.1. Structure de�nition and preliminary
experimental tests

The PCF chosen for our studies is LC 13/7, with three
rings of the air-holes, manufactured at the Maria Curie-
-Skªodowska University (UMCS) in Lublin, Poland. The
optical microscope image of the structure is shown in
Fig. 7a. We have decided to use a 3-ring PCF because of
its relatively small transverse extent and thus the possi-
bility to include the entire periodic structure within cal-
culation window. 6CHBT (also known as 6CPS) has been
selected to be the LC for in�ltration. The chemical struc-
ture of 6CHBT is presented as an inset in Fig. 7b and its
main optical properties can be found in [28]. While the
values of refractive indices (both no and ne) of LC used
for in�ltration are higher than that of the silica (nsilica),
guiding core modes (i.e., localized within the silica core)
of the analyzed structure are obtained due to the pho-
tonic bandgap-guiding mechanism.

Fig. 7. The optical microscope image of the three-ring
host PCF (a). The refractive indices of the 6CHBT
nematic LC [28] at 28 ◦C (b), where navr = 2no/3 +
ne/3 is taken when random orientation of LCs within
PCF structure is considered. Refractive index of silica
(nsilica) at the same temperature [29] is also shown for
comparison.

Fig. 8. Di�erent molecular arrangements of LC inside
the air-holes of PCF. Corresponding values of permit-
tivity tensor elements are given in Eqs. (20)�(22).

Fig. 9. Experimental setup for measuring the trans-
mission spectra of P(L)CF (a). Obtained results rep-
resenting normalized (and averaged) transmission spec-
trum for empty PCF (b) and for PLCF (c). Dashed
lines show the normalized spectrum of the light source
(together with the probing single-mode �ber of spectro-
meter). The gray shade in graphs (b)-(c) corresponds
to the uncertainty of the measurements.

After introducing the liquid crystal into the air-holes
of the host PCF, several possible molecular arrangements
can be obtained (e.g., when proper orientation treatment
is performed [30] or/and under external �elds [4�8]) as
shown in Fig. 8. Otherwise, if molecular orientation is
not predictable � it is often assumed to be random and
the average refractive index navr of LC may be considered
(for calculations).
The experimental setup for measuring the spectral

characteristics of P(L)CFs is shown in Fig. 9a. A white
light from a continuous spectrum (in the range of 300�
1050 nm) source (Ocean Optics Tungsten Halogen Cal-
ibration Light Source HL-2000-CAL and HL-2000-CAL-
-ISP) was focused onto the PCF input-facet by means of a
microscope objective. A probing SMF was then attached
in proximity to the �ber end-facet and connected to the
spectrometer. The signal was analyzed by a �ber optics
spectrometer (Ocean Optics HR4000) with spectral res-
olution of around 0.25 nm. A Peltier module was used to
heat up or cool down the PLCF sample. A Testo 735 pre-
cise thermometer with resolution of 0.05 ◦C and accuracy
of 0.1 ◦C was used to monitor temperature changes.
Transmission spectra measured for PCF before and af-

ter in�ltration are shown in Figs. 9b,c, respectively. As
one can see, the transmission spectrum of an empty PCF
is continuous, while several transmission peaks within the
spectral range of the light source exist for the PLCF sam-
ple. Such selectivity on wavelengths to be transmitted
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through the photonic structure is characteristic for the
PBG-guiding mechanism of propagation.
Above results and observations can be con�rmed nu-

merically when suitable simulations are performed over
speci�c range of wavelengths. E�ective refractive index
of the fundamental core mode with respect to wavelength
for PCF and PLCF are shown in Figs. 10b and 11, re-
spectively. However, it has to be noted that owing to the
limit of experimental means, direct quantitative compar-
ison is not quite accessible. Instead, qualitative compar-
ison of the experimental and theoretical results may be
performed.

4.2. Numerical results

Following the idea of the numerical veri�cation in-
troduced in Sect. 3, the auto-validation of the numeri-
cal schemes (i.e. the convergence analysis) for the host
(empty) PCF structure has been performed (for λ =
686 nm) as shown in Fig. 10a. In particular, both scalar-
and vector-�eld FDFD have been introduced, with a cal-
culation window of 50 µm × 50 µm used in simulations.
Using the reference value for the fundamental e�ective re-
fractive index (obtained by �tting the convergence curve
with respect to the square of the grid-size), the simula-
tions convergence to about 1 ppm has been achieved for
vector-�eld FDFD with 800 grids. Eventually, vector-
-�eld FDFD (with a grid-size of 0.625 µm) was applied
for the speci�c spectral range (similar to that used in ex-
perimental conditions), with an edge-cutting performed
in order to reduce a number of spurious results.
In the analyzed case e�ective refractive index of the

fundamental mode vs. wavelength is represented by con-
tinuous function (see Fig. 10b). It is worth to note that
the �rst two modes [with the highest (and identical) ef-
fective refractive indices] are degenerated upon polariza-
tion. Such degeneracy has been reported both theoreti-
cally [24] and numerically [25] in literature. It has been
con�rmed that results of the analogous simulations �
performed with use of commercial software (COMSOL
Multiphysics), based on the �nite elements methods �
are quantitatively and qualitatively consistent.
Vector-�eld FDFD has been applied for the PLCF sam-

ple with the same simulation parameters as shown in
Fig. 10b. In addition, the isotropic form of the permittiv-
ity tensor for LC (with values of n2

avr on its diagonal) has
been used, following thus an assumption of no orientation
order of the LC molecules within the PCF.
Figure 11 shows the numerical results on the e�ec-

tive refractive index of the fundamental core mode of the
PLCF sample as a function of wavelength. In the sim-
ulations performed di�erent number (from 10 to 100) of
the sequential eigenvalues (with the corresponding eigen-
�elds/eigenvectors) has been searched. The core-guiding
modes of each wavelength have been then manually in-
spected and their e�ective refractive indices have been
extracted.
It is worth mentioning here that PBG-guiding modes

here have very di�erent �eld patterns (see insets in the

Fig. 10. Convergence curves of the e�ective refractive
index neff (at λ = 686 nm) for the fundamental core-
-guiding mode (with a spatial �eld pattern shown in the
upper right hand corner) in the PCF with respect to
the number of grids calculated with scalar-�eld FDFD
(black squares) and vector-�eld FDFD (represented by
light-gray triangles and hollow circles for E- and H-�eld
formulation, respectively) (a). E�ective refractive index
of the fundamental mode in the PCF as a function of the
wavelength (b). Dispersion curve for the silica at T =
28 ◦C [29] is represented by a dashed line for comparison.

Fig. 11. Numerical results on the e�ective refrac-
tive index of the fundamental (quasi-x-polarized) core-
-guiding mode in the PLCF sample as a function of
wavelength (black points). Hollow circles represent the
cases in which modal area exceeds signi�cantly a core
region (and light is guided also in the PCF holes in�l-
trated with LC) and are marked with boxes if imaginary
part of refractive index occurs. The eigenvalue range of
simulations is shaded in gray. Insets show eigen�elds
(more precisely |Ex| is plotted in the central part of the
calculation window) for some selected wavelengths.
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lower left hand corner of Fig. 11) when compared to
those of the empty PCF host as shown in Fig. 10b. By
analyzing other eigen�elds obtained in simulations and
shown as insets in Fig. 11, one can see that in case of
PLCF, in addition to the core-guiding modes and the
typical cladding modes (when light propagates in the sil-
ica cladding) which are obtained for empty PCF, some
hole-guiding modes (called here as the cladding modes as
well; see Fig. 11) are also observed.

Such possibilities of di�erent solutions to be obtained
in simulations further increase the number of spurious re-
sults when searching for the core-guiding modes. Unlike
the index-guiding empty PCF, the eigen�eld patterns of
the PBG-guiding PLCF sample change signi�cantly with
wavelength, and for some of them, there are no core-
-guiding modes within the simulation range (represented
by the light-gray shade in Fig. 11, shows the range of
the eigenvalues obtained in simulations). In the view of
the transmission spectrum, such lack of the core-guiding
modes coincides with discrete transmission gaps in ex-
periment.

Results obtained suggest that in general the two po-
larizations are not degenerated (which was con�rmed
by analogous simulations performed with use of COM-
SOL software). However, the di�erence between e�ective
refractive indices of two quasi-x- and quasi-y-polarized
modes (in order of magnitude of from 10−8 to 10−7 for
core-guiding modes calculated with use of 800 grids) is
small but it is still impossible to unambiguously conclude
on the degeneracy.

It is important to note that e�ective refractive indices
for two orthogonal polarizations can be obtained when
calculated with vector-�eld FDFD. It means that infor-
mation on the birefringence and polarization mode dis-
persion of the speci�c structure can be obtained. It also
allows for the identi�cation of the hybrid-guiding, which
is obtained for some con�gurations when index-guiding is
observed for one and PBG-guiding for the other state of
polarization, as reported in [31, 32]. In analyzed case of
PLCF structures, it is possible to align the liquid crys-
tal molecules within the �ber starting from the planar
and ending up with the transverse con�guration (which
are speci�c cases of the angular orientation as shown in
Fig. 8), as it was suggested by some previous reports
showing the signi�cant tunability of PLCFs with exter-
nal �elds, e.g. [8]. While the vector-�eld FDFD scheme
implemented in this work allows transverse anisotropy to
be accounted, it is possible to study the e�ects of rotation
of LC molecules (in the transverse plane) on the propa-
gation properties of the PLCF considered. Permittivity
tensor elements for di�erent molecular arrangements of
LC inside the air-holes of PCF (see Fig. 8) are:
for planar orientation

εxx = n2
o, εyy = n2

o, εzz = n2
e , εij(i ̸=j) = 0, (20)

for transverse orientation

εxx = n2
0, εyy = n2

e , εzz = n2
0, εij(i ̸=j) = 0, (21)

and for angular orientation

εxx = n2
0, εyy = n2

o cos
2ϕ+ n2

e sin
2ϕ,

εzz = n2
e cos

2ϕ+ n2
o sin

2ϕ, εij(i ̸=j) = 0. (22)

Exemplary results of simulations performed for di�erent
orientational angles (ϕ, θ) of the LC molecules, with per-
mittivity tensor calculated with formulae given in Eqs.
(20)�(22) and refractive indices of LC shown in Fig. 7b,
are summarized in Table V.

TABLE V

Exemplary results of the vector-�eld FDFD simulations
performed for di�erent molecular orientation of LC within
PLCF sample (with transverse anisotropy considered).

λ [nm]
LC conf.,
θ = 90◦

neff,x neff,y Remark

775 nm

no LC
(empty PCF) 1.45302447 1.45302447 degenerated

ϕ = 0◦ 1.45303678 1.45313378 ∆ = 9.7 × 10−5

ϕ = 15◦ 1.45303748 1.45313371 ∆ = 3.4 × 10−5

ϕ = 30◦ 1.45300314 1.45300314 degenerated

ϕ = 45◦ 1.45300822 1.45300822 degenerated

ϕ = 60◦ 1.45300286 1.45300286 degenerated

ϕ = 75◦ 1.45293748 1.45298277 ∆ = 4.5 × 10−5

ϕ = 90◦ 1.453133809 1.45304586 ∆ = 8.8 × 10−5

800 nm ϕ = 90◦ � 1.45284146 single
polarization

650 nm ϕ = 75◦ � � no core mode

From the results obtained it may be concluded that it
is possible to �nd wavelengths (e.g., 775 nm in Table V)
for which continuous tuning of the molecular orientation
is possible with a core-guiding mode always present in the
structure. For some speci�c settings (i.e., wavelength and
sample con�guration), there are cases when core-guiding
mode appear only for one polarization state or it does not
propagate in the structure. It is worth to note that for
θ = 90◦ and ϕ = 30◦, 45◦, 60◦ analyzed structure behaves
like the empty one (i.e., there are no gaps in neff(λ) curve
and modes are degenerated upon polarization) with the
only di�erence in the values of e�ective refractive index
of the core-guiding modes (which are higher when LC is
present in the PCF sample).

5. Conclusions

In this work, we focus on numerical methods for the
characterization of PLCFs with accessible computational
e�ort. More speci�cally, both the scalar- and the vector-
-�eld schemes were formulated theoretically and imple-
mented numerically with the use of the �nite di�erence
methods (FDFD/FM). It has been found that compared
to analytical values, the relative error introduced in the
scalar-�eld formulation is almost 100 times higher than
the vector-�eld formulation for a HC-SIF. When vector-
-�eld FDFD is applied, relative error of 3 ppm is observed
for e�ective refractive index of the fundamental mode in
HC-SIF and 413 ppm in a HoF with index-guiding geome-
try. The < 0.1% relative errors qualify for simulations on
PLCFs. However, spurious results appear to be a concern
when PBG guiding �ber geometries are considered, as the
eigenvalue range of the simulation is very limited under
some conditions. Simulations show the wavelength selec-
tivity in transmission spectrum, which is correspondingly
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observed in experiments. Future examinations on both
the experiment and the numerical schemes are required
to justify the simulations and to analyze the discrepancy.
It is worth to underline that a vector-�eld FDFD scheme
developed and implemented here can easily take into con-
sideration the anisotropy of LC with arbitrary rotation
in the transverse plane with respect to the propagation
axis of the �ber.
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