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Simulation of light beam propagation in optical �ber with a high step index requires the use of complicated
methods. One of the simplest and accurate method is presented in this paper. The possibility of use of beam
propagation method with exact boundary conditions in light beam propagation in optical �bers is shown in this
work. The comparison of this method with analytical solutions for planar waveguide and optical �ber con�rms
usefulness of it.
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1. Introduction

One of the basic method for analysis of the light beam
propagation is beam propagation method (BPM) [1]. It
has a lot of varieties such as �nite di�erences (FD-BPM)
[2, 3], �nite elements (FE-BPM) [4, 5] or based on the fast
Fourier transformation (FFT-BPM) [6]. These methods
have the same disadvantages: they could be only used in
a homogeneous region and an inhomogeneous one with
a small step of the refractive index. Of course, there
are known some approximations of the step index pro-
�le such as the graded index [7], the staircase index [8]
or the average index [2]. Unfortunately, in most cases
in structures such as microstructural �bers [9, 10], slot
waveguides [11, 12], buried waveguides [13], photonic
nanowires [14, 15] these approximations are not accurate
enough [16], especially when a polarization is considered.
The reason of it is that in above mentioned structures
high step of the refractive index is observed, for instance
between air and silica glass or air and silicon. This dif-
ference between refractive indices determines the elec-
tromagnetic �eld distributions during propagation and
consequently has an in�uence on the polarization.
In Fig. 1 there are presented the guided modes in a

planar waveguide for di�erent polarizations and di�erent
value of step of the refractive indices. As it is seen for
the case when the �eld is perpendicular to the surface,
there is observed a step of the amplitude at the border
according with increased electric permittivity. One of
the ways to solve the problem of the high step of the
refractive index for the FD-BPM in the scalar case was
presented by Vassallo [17]. A more general method for
structures with arbitrary shapes was presented by Chang
et al. [18, 19]. However, a practical implementation of
this method is complicated.
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In this paper it is presented simpler (than that pro-
posed by Chang) possibility of use FD-BPM together
with exact boundary conditions (EBC) from the Maxwell
equations to the analysis light beam propagation in op-
tical �bers and waveguides with a high step index.

Fig. 1. The guided mode in a planar waveguide: for
the TM polarization and the electric �eld perpendicular
to the border: (a) εcore = 1.1025, εclad = 1, (b) εcore =
2.1025, εclad = 1 and for the TE polarization and the
electric �eld parallel to the border (c) εcore = 1.1025,
εclad = 1, (d) εcore = 2.1025, εclad = 1.

2. Description of the method

In most cases BPM bases on the paraxial equation for
the electric �eld

−2iβ
∂

∂z
E +

∂2

∂x2
E +

∂2

∂y2
E + γ(x, y)2E = 0, (1)

where β is a constant, E is an amplitude of the electric
�eld

(829)
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E(x, y, z, t) = E(x, y, z)e iωt− iβz, (2)

and γ is equal to

γ2 =
ω2

c2
ε− β2, (3)

ε is electrical permittivity in medium. Using the coordi-
nates in a discrete form as{

x = ∆xN + x0,

y = ∆yM + y0,

M,N = 1, 2, 3, . . . (4)

Eq. (1) can be solved numerically, where in the simplest
split-step BPM a discrete formula is written as

E(N,M, z +∆z)− E(N,M, z)

∆z

=
1

2iβ

(
E(N − 1,M) + E(N + 1,M)− 2E(N,M)

∆x2

+
E(N,M − 1) + E(N,M + 1)− 2E(N,M)

∆y2

+ γ(N,M)2E(N,M)

)
. (5)

Amplitudes used at the right side of Eq. (5) are calculated
in z or/and z+∆z depending on a method [20]. Changes
of the refractive index are included only in changes of γ
value.

Equation (1) is useful in a homogeneous medium
(∇ε = 0) and in an inhomogeneous one characterized
by slowly varying of electric permittivity (∇ε/ε ≪ 1/λ,
where λ is the wavelength). This is a serious disadvan-
tage of a useful paraxial equation, especially when it is
considered a structure with a high step of the refractive
index (as it is seen in Fig. 1), where the �eld perpen-
dicular to the surface is discontinuous. Therefore, we
propose an algorithm, where a propagation in homoge-
neous regions is calculated from Eqs. (1) and they are
matched by proper EBC. The boundary conditions be-
tween two di�erent media to consider polarization e�ects
are obtained from the Maxwell equations [19]:

ε1E
(1)
n = ε2E

(2)
n , (6)

E
(1)
t = E

(2)
t , (7)

∂

∂n
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n , (8)

∂
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(1)
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E
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t +

(
ε2
ε1

− 1

)
∂

∂t
E(2)

n , (9)

where indices t and n represent components which are
parallel and perpendicular to the surface.

This EBC can be used for any algorithm, but in this
paper we use algorithm based on the paraxial Eq. (1).
Two components of an electric �eld in the same time (for
curve structure is necessary) are used for calculations.
The general established procedure of this algorithm is
that the �elds are calculated separately in homogeneous
media i.e. in a medium with an electric permittivity ε1
there is �eld with an amplitude E(1) and in a medium
with an electric permittivity ε2 there is �eld with an am-

Fig. 2. Cross-section of the problem under border for
optical �ber. The values E represent the electric �eld
components Ex, Ey, Et, En.

plitude E(2). Solutions in neighboring media are matched
at each step on the border by using boundary conditions
(6)�(9). To receive an exact solution the border between
two media must be stored (the distance between border
and the nearest grid points in appropriate directions).

Because of the fact that considered structure is curved,
as seen in Fig. 2, we make a local transformation of the
�eld from Cartesian coordinates to cylindrical, as follows:{

En = Ex cos θ + Ey sin θ,

Et = −Ex sin θ + Ey cos θ.
(10)

The boundary conditions (6)�(9) for the �eld at the bor-
der must be ful�lled for each point, where the lines cross
the border line, like point A and B in Fig. 2. The point
A lies in the ∆yM + y0 = const line (in the distance
∆x1(A) from line ∆yM + y0 = const and ∆x2(A) from
line ∆y(M + 1) + y0 = const). Analogously, the point B
lies in the ∆xM + x0 = const line. Using this notation,
Eqs. (6), (7) can be rewritten in a discrete form

ε1E
(1)
n (A) = ε2E

(2)
n (A), (11)

ε1E
(1)
n (B) = ε2E

(2)
n (B), (12)

E
(1)
t (A) = E

(2)
t (A), (13)

E
(1)
t (B) = E

(2)
t (B) (14)

and from Eqs. (8), (9) we propose an approximation

E
(1)
n (A)− E

(1)
n (M,N)

∆x1

=
E

(2)
n (M,N + 1)− E

(2)
n (A)
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, (15)

E
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E
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, (17)



Analysis of Light Propagation in Optical Fibers . . . 831

E
(1)
t (B)− E

(1)
t (M,N)

∆y1

=
E

(2)
t (M + 1, N)− E

(2)
t (B)

∆y2
. (18)

If we assume that

E
(1)
n (A)− E

(1)
n (M,N)

∆x1

≈ E
(1)
n (M,N + 1)− E

(1)
n (M,N)

∆x
(19)

and analogous relations for other derivatives for neigh-
boring points, the following relations from (11)�(18) are
obtained:

E(1)
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∆x1
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E(1)

n (M,N) +
∆x
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, (20)
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E

(1)
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∆y1

×∆y1E
(2)
t (M + 1, N) + ∆y2E

(1)
t (M,N)

∆y2 +∆y1
. (23)

The �elds E
(2)
n (MN) and E

(2)
t (MN) can be calculated

analogously.
The last step is to do the inverse transformation, and

back to Cartesian coordinates system by the following
relations:{

Ex = Er cos θ − Eθ sin θ,

Ey = Er sin θ + Eθ cos θ.
(24)

Summarizing, in order to use Eq. (5) to calculate the
�eld in the next plane at point E(1)(y, x) near the border
for the medium �1�, we should known the value at point
E(1)(y, x+∆x) or E(1)(y, x−∆x) and E(1)(y+∆y, x) or
E(1)(y −∆y, x) outside the border and in medium '2' to
calculate the �eld E(2)(y, x) the value at point E(2)(y, x+
∆x) or E(2)(y, x−∆x) and E(2)(y +∆y, x) or E(2)(y −
∆y, x) must be known. In this case the conditions from
Eqs. (11)�(22) are used.

3. Numerical results

The �rst presented results showed a (1+1) dimension
beam propagating in the planar waveguide (Fig. 3a). The
material parameters used in simulations correspond to

Fig. 3. Simulations for: (a) the planar waveguide with
(b) the guided mode calculated analytically, (c) beam
propagation for the BPM with EBC, and (d) classical
BPM.

the electric permittivity of the cladding εclad = 1, elec-
tric permittivity of the core εcore = 9 and the width of
the core is 0.6λ. The guided mode for an examined struc-
ture is seen in Fig. 3b. Simulations were done for a pro-
posed method and classical BPM based only on parax-
ial Eqs. (1). In both cases simulations were run for a
launched beam corresponding an analytical solution of
the guided mode.

Light is guided in the area of a higher refractive index
in both case. But in the conventional BPM discontinu-
ities of the �eld distribution at borders between the core
and the cladding are disappearing at a very short distance
of propagation (Fig. 3d). The situation is quite di�er-
ent in simulations using the BPM with EBC (Fig. 3c).
Moreover, the �eld distribution after 30λ is the same as
analytical solutions.

The simulation presented in Fig. 4 was done for (2+1)
dimension beam propagation in cylindrical �bers. The
�rst (Fig. 4a) has the electric permittivity of the cladding
εclad = 1, the electric permittivity of the core εcore = 1.96
and the radius of the core is 0.4λ. The second �ber di�ers
only with the electric permittivity of the core εcore = 5.76
and the radius of the core is 0.2λ. The guided mode for
examined structures are seen in Fig. 4c,d. The di�erent
value of the refractive index core causes a higher step of
the amplitude at the border in x direction. The simula-
tions were done similarly, as it was for the planar wave-
guide. Two methods, BPM and BPM with EBC were
used. Also, in both cases, simulations were run for a
launched beam corresponding to an analytical solution
of the guided mode.

The results of the propagation at a distance 30λ
are shown in Fig. 4e,f (for conventional BPM) and in
Fig. 4g,h (for proposed method). In the conventional
BPM discontinuities of the �eld distribution at borders
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Fig. 4. Simulations for: (a) an optical �ber with (c)
the guided mode of the x component of the electric �eld,
(e) distribution of the �eld received after distance 30λ
for classical BPM and (g) for BPM with EBC. Analo-
gously, parts (d, f, h) are for an optical �ber (b).

between the core and the cladding disappear for both
�bers (Fig. 4e,f). The received distributions for the x
component electric �eld from simulations for BPM with
EBC (Fig. 4g,h) are the same as guided modes. In both
cases it is observed a discontinuity of the �eld in x direc-
tion.
In all numerical calculations the Runge�Kutta (RK4)

[21] algorithm was used to speed up simulations and per-
fect matched layers (PML) [20] to reduce re�ections from
a computational window.

4. Conclusions

Summarizing, we proposed the implementation of the
BPM with relatively simple form of EBC. The proposed

method can be used for analysis of beam propagation in
dielectric structures with high step of a refractive index.
This was con�rmed by showing results in (1+1)D case
in the planar waveguide and in (2+1)D case in optical
�bers.
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