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Multimodal Transition and Excitability of a Neural Oscillator
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We analyze the response of the Morris�Lecar model to a periodic train of short current pulses in the
period-amplitude plane. For a wide parameter range encompassing both class 2 and class 3 behavior in the
Hodgkin classi�cation there is a multimodal transition between the set of odd modes and the set of all modes.
It is located between the 2:1 and 3:1 locked-in regions. It is the same dynamic instability as the one discovered
earlier in the Hodgkin�Huxley model and observed experimentally in squid giant axons. It appears simultaneously
with the bistability of the states 2:1 and 3:1 in the perithreshold regime. These results imply that the multimodal
transition may be a universal property of resonant neurons.

PACS: 87.19.lb, 87.19.ll, 87.19.ln

1. Introduction

In 1948 Hodgkin studied the response of neurons to
stimulation by a constant current [1]. He summarized his
�ndings by dividing neurons into three classes: those hav-
ing continuous relation between the current amplitude
and response frequency (type 1), those with a discontin-
uous jump of response frequency at the stimulus thresh-
old (type 2), and those which spike only once or twice to
the constant current stimulus (type 3). Most mammalian
neurons are believed to be of type 1 [2]. Some models in
this category are the Connor model of molluscan neurons
[3, 4], the theta neuron [5�7], the Wang�Buzsaki model
of hippocampal interneurons [8], and the Wilson�Cowan
model of a relaxation oscillator [6]. Well known examples
of type 2 neurons include Hodgkin�Huxley (HH) [9], fast-
-spiking cortical cells [10, 11], Morris�Lecar (ML) [12, 13]
and Hindmarsh�Rose [14] models. Some neuron models
are known to exhibit di�erent types of excitability, de-
pending on parameter values. Prescott et al. [15] showed
in the ML model, originally used to describe the barna-
cle giant muscle �ber, that change of one parameter was
su�cient to switch between type 1, type 2, and type 3
dynamics.
There is more evidence that the spike initiation mecha-

nism is not a �xed property of the neuron. In some exper-
iments the squid giant axons had type 3 instead of type 2
excitability [16, 17]. The discrepancy between the type 2
behavior of the HH model and experiment was explained
by modifying a single parameter in the term describing
the potassium current [18]. In a recent study of the pe-
riodically stimulated HH model by the present author it
was found that the �ring rate may be either continuous
or discontinuous function of the current amplitude, de-
pending on the stimulus frequency [19]. Bistable behav-

ior at the excitation threshold appears at non-resonant
frequencies [19]. When brief stimuli arrive at resonant
frequencies, the HH neuron may respond with arbitrarily
low �ring rate. The dependence of the �ring rate on the
current amplitude scales with a square root above the
threshold, consistent with a saddle-node bifurcation [20].

The HH neuron's response at resonant frequencies can
be divided into three regimes: (i) short pulses, where the
width τ does not exceed the optimal width τopt associ-
ated with a minimum threshold τopt, (ii) τopt < τ < Tres,
and (iii) τ ≈ Tres [19]. Tres is de�ned here as the stimu-
lation period for which the amplitude of the membrane
potential oscillations is maximum. The inverse of Tres is
the neuron's natural frequency. The Hodgkin classi�ca-
tion scheme is related to case (iii). However the analysis
of response in the limit of short stimuli gives an alterna-
tive information about the neuron's dynamics [19], where
a multimodal transition (MMT), involving the change
of parity of response modes, was discovered at frequen-
cies above the main resonance frequency [21]. Experi-
mental data of Takahashi et al. [22] provide strong evi-
dence for the existence of this transition [23]. The MMT
occurs just above the threshold, between the locked-in
states 2:1 and 3:1. Could this be a universal property
of resonant neurons? How does the MMT relate to the
Hodgkin's classi�cation? Is it possible to use the MMT
as a basis for distinguishing between di�erent types of
neurons? Answering these questions should increase our
understanding of the role played by various groups of neu-
rons in encoding di�erent types of neural input [10, 11,
24, 25]. In the following we try to establish the link be-
tween the global bifurcation diagram of the ML model
and the MMT for a parameter set used in Ref. [15] and
analyze the evolution of excitability patterns as a func-
tion of a single parameter.
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2. The model and results

We use the form of the ML model proposed by Prescott
et al. [15],

C
dV

dt
= −gfastm∞(V )(V − ENa)

− gsloww(V − EK)− gL(V − EL) + Iapp, (1)

dw/dt = ϕw
w∞(V )− w

τw(V )
, (2)

m∞(V ) = 0.5

[
1 + tanh

(
V − βm

γm

)]
, (3)

w∞(V ) = 0.5

[
1 + tanh

(
V − βw

γw

)]
, (4)

τw(V ) = 1/ cosh

(
V − βw

2γw

)
. (5)

The fast activation variable V competes with the slow
recovery variable w. Parameter values were chosen in
Ref. [15] to produce di�erent spiking patterns: ENa =
50 mV, EK = −100 mV, EL = −70 mV, gfast =
20 mS/cm2, gslow = 20 mS/cm2, gL = 2 mS/cm2,
ϕ = 0.15, βm = −1.2 mV, γm = 18 mV, and γw = 10 mV.
C = 2 µF/cm2 is the membrane capacitance. We chose
the input current to be a periodic set of rectangular steps
of period Ti, height I0 and width τ = 0.5 ms. Studying
the HH model, we learned that the topology of the global
bifurcation diagram is only weakly dependent on shape
details of individual pulses, provided they remain short
compared to the time scale of the main resonance [19, 26].
The calculations are carried out within the fourth-order
Runge�Kutta scheme with the time step of 0.001 ms. In-
dividual runs at �xed parameters were carried out for
1000Ti. Since the variation of βw is su�cient to alter the
excitability type of the model, we study the e�ect of βw

on the dynamics at �nite frequencies. Changes of other
parameters, βm, gfast, gslow, γm, and γw, may result in
similar evolution of the neuron's dynamics [15].
Figure 1 shows the global bifurcation diagram in the

period-amplitude plane for βw = 0. We call it a response
diagram since it characterizes the response of the dynam-
ical system to a periodic perturbation. The lines on this
graph are borders between the dominant locked-in states
and regions of irregular response. In the limit, where
Iapp is always constant and Ti = τ , this choice leads to
type 1 excitability [15]. In Fig. 1 the dependence of the
�ring rate f0/fi on I0, where fi = 1/Ti, and f0 = 1/T0,
is continuous everywhere along the excitation threshold,
scaling approximately as (I0 − Ith)

1/2, where Ith is the
value of I0 at the threshold.
When βw = −13 mV, the neuron displays class 2 dy-

namics for a constant current. In Fig. 2 we can see that
the �ring rate is a discontinuous function of the cur-
rent amplitude also at short stimulation periods. For
Ti < 4 ms almost the entire threshold is bistable. How-
ever, for Ti > 4 ms the system remains monostable.
More precisely, the bistability does not extend beyond
the 3:1 state and the edge of the 2:1 state is monostable.

Fig. 1. Response diagram for βw = 0. The main
locked-in states, 1:1, 2:1, and 3:1, are labeled by the
inverse of the �ring rate, T0/Ti, where the T0 is the av-
erage time between voltage spikes. The 4:1 state is also
shown but its label is omitted due to a lack of space.
The lowest line is the excitation threshold between qui-
escence and a �nite �ring rate.

Fig. 2. Response diagram for βw = −13 mV. The
locked-in states of order 3:1 and higher are bistable
along the threshold. However the 2:1 state remains
monostable. The dashed line separates the monostable
regime from the bistable area. We have veri�ed that
MMT does not appear in this case.

The long-period response in Figs. 1 and 2 is very similar.
Wang et al. [27] also noted the similarity of response in
this regime for a sinusoidal input.

Figure 3 shows the response diagram for βw = −23mV.
There are now large bistable regions of the states 3:1 and
2:1. The short stimulation period part of the diagram, for
Ti < 5 ms, closely resembles the regime of the HH model
where the MMT occurs [21, 23]. We have analyzed the
histogram of interspike intervals (ISI) and found the same
dynamic singularity in the ML model. The location of
the transition is indicated in Fig. 3 by full squares. The
f0 vs. I0 dependence in the interval between the MMT
and the 2:1 state is approximately linear, as in the HH
model [21].
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Fig. 3. Response diagram for βw = −23 mV. The
dashed line separates the monostable regime from the
bistable area. The location of the odd-all multimodal
transition is denoted by full squares. For 1.5 ms < Ti <
5 ms this diagram closely resembles the one obtained for
the HH model [19].

Fig. 4. The �ring rate (top) and the weight of even
modes (bottom) for βw = −23 mV and I0 =
245 µA/cm2.

The MMT along the Ti axis for βw = −23 mV is shown
in Fig. 4. The weight of even modes drops sharply in the
vicinity of the minimum of the �ring rate. The edges
of individual modes near the transition scale logarithmi-
cally, as in the HH model [21]. All these signatures of
the MMT and the topology of the bifurcation diagram in
the vicinity of the MMT in the ML model are identical
to the HH model.

Figure 5 shows sample V (t) runs on both sides of
the even-all transition. In the top part, obtained at
Ti = 2.65 ms, the even modes 4:1 and 8:1 dominate.
In the bottom part obtained at Ti = 2.45 ms only odd
modes are present. Here the height of the V (t) peak
correlates with the length of the preceding interspike in-
terval. A careful examination of the peak heights reveals

Fig. 5. Sample V (t) run for βw = −23 mV, I0 =
245 µA/cm2. The top part contains data taken above
the odd-all transition at T = 2.65 ms. Here the even
modes are more frequent than the odd ones but there is
also some admixture of the odd modes. The bottom part
shows data at Ti = 2.45 ms. Let us note the absence of
even multiples of the driving period in the bottom part.
Here the response contains only the following multiples
of Ti: 3, 5, 7, and 9.

a preference for a T0 = 3Ti, following the action potential
with the maximum value of V . This preference is man-
ifested either as (i) another action potential, or as (ii)
subthreshold peak with a height somewhat larger than
that of its immediate neighbors. Judging by the height of
subthreshold peaks there is a clear preference for a period
2Ti subthreshold oscillation. We can view the odd-only
periods in the bottom part as a sum of 3Ti+2nTi, where
n = 0, 1, . . .

Fig. 6. Maximum and minimum values of V (t) as a
function of Ti for βw = −23 mV and I0 = 230 µA/cm2.
It is a crosssection of the 2:1 mode-locked area. The
optimal response is obtained at Ti ≈ 3.85 ms, which
gives the resonant time scale of 7.7 ms.

The system's resonant frequency may be estimated by
examining the extrema of V (t). Figure 6 shows the de-
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Fig. 7. The �ring rate and the joint histogram weight
of even modes for βw = −13 mV and Ti = 4.7 ms.
A precursor of the multimodal transition can be seen
near I0 = 198.2 µA/cm2. There is a well pronounced
local minimum of the f0/fi and a signi�cant reduction
of the participation rate of even modes.

Fig. 8. From top to bottom: the �ring rate, the joint
histogram weight of even modes, and the ISI spectrum
for βw = −18 mV and Ti = 3.7 ms. The multimodal
transition occurs at I0 = 207.5 µA/cm2.

pendence of Vmax(t) and Vmin(t) on stimulus period in
the 2:1 zone of Fig. 3. The action potential amplitude
reaches maximum values at Ti ≈ 3.85 ms. Therefore the
resonant period is Tres ≈ 2 × 3.85 ms = 7.7 ms, giving
the resonant frequency of fres = 1/7.7 ms = 130 Hz.
A similar estimate, although somewhat less accurate, is
obtained from the minimum of the monostable region of

the 2:1 zone in Fig. 3 located near Ti = 3.5 ms. For other
values of βw, fres can be obtained also from the minimum
thresholds of the 3:1 and 4:1 zones in Figs. 1 and 2. We
found that fres does not depend signi�cantly on βw.
We also analyzed the ISI histogram as a function of βw,

looking for signs of the MMT. For βw = −13 mV we can
see a precursor of the odd-all MMT in Fig. 7. There
is a local minimum of f0/fi at I0 = 198.2 µA/cm2 and
a signi�cant decrease of the participation rate of even
modes close to the threshold.
The MMT is tied to the appearance of bistability

along the bottom edge of the 2:1 state, which occurs
for βw < −14.5 mV. In Fig. 8 we can see that for
βw = −18 ms the MMT is already well developed. As
the MMT is approached from above, only very high or-
der even modes remain. The edges of the even modes
scale logarithmically as a function of |I0 − I∗|, where
I∗ is the current amplitude at which the transition oc-
curs. When the bistability of the state 2:1 disappears
near βw = −29 mV, so does the MMT. At this value
of βw the 3:1 state vanishes from the global bifurcation
diagram.

3. Conclusions

The dynamics of neurons at periods below the resonant
period is not directly related to either class 2 or class 3
excitability. The global bifurcation diagram of the class
3 ML model for βw = −23 mV closely resembles the
class 2 HH model [21] at intermediate frequencies. This
is consistent with the remarks of Prescott et al. [15] that
neurons should not be labeled as being strictly type 2
or type 3. The transition to bistability at the edge of
a 2:1 state in a model stimulated by a train of current
pulses does not occur for the same parameter values as
the transition to bistability for a constant current. The
bistability appears �rst in the limit of small stimulation
period. As βw decreases further, the perithreshold re-
gions for larger Ti also become bistable. The MMT oc-
curs when both the 2:1 and the 3:1 state have bistable
regions along the threshold. The ability to predict the
existence of the MMT from the topology of the locked-in
states in the perithreshold regime is of course a very use-
ful property. Testing for bistabilities near the threshold
is much simpler and computationally much more e�cient
than analyzing the evolution of the entire ISI histogram
as a function of pulse period or amplitude.
Wang et al. [27] noted the similarity of class 1 and class

2 neuron response to sinusoidal signal at low frequencies.
This is not surprising, once we note that the threshold
bistability, and a discontinuity of the �ring rate f0/fi
associated with it, appears �rst in the limit of small Ti

and extends towards larger Ti with decreasing βw. When
βw < −14.5 mV, the 3:1 state becomes bistable and the
entire threshold in the regime of small Ti rises signi�-
cantly. The emergence of class 3 behavior may be viewed
as a strong rigidity of neuron dynamics in the limit of
high stimulation frequency.
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Based on this relationship between MMT and the
global bifurcation diagram we can classify neuron ex-
citability for stimuli of �nite frequency: (i) class 1, where
the �ring rate is a continuous function of I0 everywhere
along the threshold, (ii) class 2, with bistabilities at the
edges of high-order locked-in states, (iii) class 3, where
the MMT exists, and (iv) class 4, where both the MMT
and the bistabilities are absent and the neuron responds
to a constant current by emitting only a few spikes.
The presence of the MMT in both the ML and HH

model suggests that the same transition is present in
other resonant neuron models classi�ed as type 2 or
type 3 cells. The existence of MMT may have impor-
tant physiological consequences. It may be relevant in
the high-frequency auditory nerve �ber stimulation [28]
and possibly in the clinical procedure of deep brain stim-
ulation [29].
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