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Many-Channel Landauer-Like Conductance Formula
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Linear-response theory is combined with the Landauer viewpoint to describe quantitatively transport in a
four-lead mesoscopic structure within the presence of a uniform magnetic �eld. A new multichannel magneto-
conductance formula is derived in the case where the magnetic �eld is perpendicular to the current-�ow. The
invariance under magnetic reversal test is con�rmed.
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1. Introduction

For long time, it has been well recognized that trans-
port in mesoscopic systems may relate to their scat-
tering properties as it was originally proposed by Lan-
dauer [1, 2]. The single-channel conductance formula
has been �rst obtained heuristically as proportional to
the ratio between transmission and re�ection coe�cients
G = 2e2

h
T
R [1].

Main attempts to derive this formula from linear-
-response theory (LRT) are known in the literature (see
Ref. [3] and references therein). However, for long time,
the generalization to a multichannel formula has been a
great challenge for the physicists. The major di�culty
is that, in the LRT, the current-�ow in a sample is ob-
tained as a response to an applied external perturbation
inside the reservoirs in accordance to the Kubo viewpoint
(KVP), whereas in the Landauer viewpoint (LVP) the
current itself is considered as responsible for the induc-
tion of a position-dependent potential inside the sample.
At this level, one has to note that it has been established
heuristically that contacts between the reservoirs and the
sample are at the origin of the di�erence between the two
points of view [4].
In recent works [5], a theory of transport that com-

bines the LVP with the LRT and which does not con-
sider the e�ect of the contacts (called thereafter a self-
-consistent LRT) in order to calculate the relevant part
of the density-operator for mesoscopic samples in the
absence of an external magnetic �eld, has been pro-
posed. The obtained density-operator, necessary to eval-
uate all physical quantities, was used to derive a new
and more plausible four-lead multichannel conductance
formula that does not endure any of the inconsistencies
cited in the literature for the other known formulae [3, 6].
This self-consistent LRT was recently extended to take
into account the existence of a uniform magnetic �eld
[7, 8]. It has been shown that the density-operator may

be written as a sum of two terms [7]: the �rst represents
the Kubo density-operator ρK [7�9] and the second de-
�nes the contribution of self-consistent e�ects ρSC [7, 8]:

ρL = ρK + ρSC. (1)

Our aim in this work is the use of Eq. (1) to deter-
mine quantitatively the magnetoconductance of a four-
-lead mesoscopic measurement in terms of the scatter-
ing matrix elements whenever self-consistent e�ects are
relevant; that is, whenever the e�ect of the contacts is
neglected and the induced potential inside the sample is
considered.

2. Magnetoconductance in terms

of S matrix elements

Consider a mesoscopic scatterer connected via two
straight identical semi-in�nite perfect leads to two large
particle-reservoirs acting as current source and sink, and
maintained at constant chemical potentials µL and µR,
respectively, where µL − µR is small enough to ensure
a linear-transport regime. The sample (the mesoscopic
disordered part plus the leads without including the
contacts) having a volume Ω = LS is immersed in a
uniform perpendicular time-independent weak magnetic
�eld B = Bẑ.
The transport throughout the sample is completely co-

herent and the measuring probes are ideally coupled in
order not to disturb the measurement, see Fig. 1.
In LVP as a response to current-�ow between the reser-

voirs, a position-dependent potential w(r) builds up in-
side the sample due to charges accumulation on both
sides of the scatterer [1, 2, 10]. Once the steady-state
regime (SSR) is established, w(r) will take constant val-
ues, wL and wR, in the left and right asymptotic regions,
that are di�erent from the chemical potentials of the ad-
jacent reservoirs; i.e., wL ̸= µL and wR ̸= µR, respec-
tively.
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Fig. 1. Mesoscopic sample in a perpendicular mag-
netic �eld, with the assistance of non-invasive measuring
probes.

The one-particle Hamiltonian for transport carriers in
the SSR is then given by

H ′ = H + w(r) = H0 + V (r) + w(r), (2)

where w(r) represents the built-up position-dependent
potential inside the sample resulting from the self-
-consistent pile-up of carriers between left and right scat-
terer sides [1, 2, 5, 11�13], V (r) is the electron-impurities
interaction potential, and H0 is the Hamiltonian of the
non-interacting con�ned electron. In the e�ective mass
approximation H0 = 1

2m∗ (p − eA)2 + Vc(r), where p
stands for the momentum operator, A for the vector po-
tential and Vc(r) for the con�nement potential in the y
and z directions. For later use, we choose the Landau
gauge: A = −Byi.
The eigenfunctions of H0 are a product of plane waves

propagating in the longitudinal x-direction and con�ned
functions in the y and z directions

φξ(r) =
1√
L
exp(± ikax)χξ(y, z),

where ξ denotes the transmitted channels a, the corre-
sponding positive longitudinal wave vector ka and the
direction of propagation σ = ±; i.e., ξ ≡ (a, ka, σ).
To each of these eigenfunctions with energy eigen-

value εξ, corresponds an outgoing ψ+
ξ (r) and an ingoing

ψ−
ξ (r) scattering states, as the eigenstates of H with the

same eigenvalue εξ [5, 9]. In the asymptotic regions of
the leads, at a given energy, ψ±

ξ (r) are simple combina-

tions of φξ(r); they relate via the left/right transmission
and re�ection coe�cients tL, tR, rL, rR that de�ne the
unitary scattering matrix S [5, 9].

2.1. Current-�ow

Since the sample is not invariant by translation, in
the presence of a magnetic �eld the one-particle current-
-density operator at point r′ may be written in a sym-
metrical form as

j(r′) =
e

2m∗
[
(p− eA)δ(r − r′)

+ δ(r − r′)(p− eA)
]
. (3)

In the LVP, the resulting expectation value of the current-
-�ow operator through an arbitrary cross-section S′ (i =∫
S′ dS

′ · j(r′) with S′ may be chosen in the asymptotic
regions of the leads) is de�ned by the trace of the product
of ρL, Eq. (1), by i and may conveniently be separated

into a sum of two terms

I = TrρLi = IK + ISC. (4)

2.1.1. Kubo's term

Making use of the ρK expression derived in [7, 8], one
can easily see that IK coincides with the expression given
by KVP [9], yet now the chemical potentials of the reser-
voirs are replaced by the induced electrochemical poten-
tials in the asymptotic regions of the leads

IK =
∆w

2

∫
dε[−f ′(ε)]

∑
ξ

δ(ε− εξ)(i
+)ξξ, (5)

where ∆w = wL − wR, f
′(ε) de�nes the derivative

of the Fermi�Dirac distribution function at energy ε
and (i+)ξξ = ⟨ψ+

ξ |i|ψ
+
ξ ⟩ is the current-�ow matrix el-

ement in the outgoing scattering states. The sum
over ξ in the right hand side (rhs) of Eq. (5) which
reads

∑
ξ ≡

∑
a,σ

∑
ka

where
∑

ka
may be written as∑

ka
→L→∞

L
h

∫∞
εξ

1

v
εξ
a

dεξ, with v
εξ
a representing a B-

-dependent channel velocity in the x-direction at given
energy εξ [9, 14], is restricted to states of �xed energy
εξ = ε because of the Dirac δ -function. In that case,
carrying out the integration over εξ, Eq. (5) may be ex-
pressed like

IK =
e∆w

2h

∫
dε[−f ′(ε)]

ε∑
a,σ

σ(Π+)εaσ, (6)

whereΠ+ is a 2n-column vector given by its components
(Π+)εaσ = ⟨ψ̄+,ε

aσ |i|ψ̄+,ε
aσ ⟩ with |ψ̄+,ε

aσ ⟩ =
√
L/vεa|ψ+,ε

aσ ⟩ are,
at a given energy ε, the outgoing scattering states nor-
malized to unit incoming �ux: (Π+)ε(a+) = −(tL+tL)aa;

(Π+)ε(a−) = −(tR+tR)aa

2.1.2. Self-consistent term

In Ref. [7], it has been shown that ρSC =∑
ξ

∣∣∣ψ+
ξ

⟩⟨
ψ+
ξ

∣∣∣(ρLd )ξξ, where (ρLd )ξξ = ⟨φξ|ρLd |φξ⟩ are the

matrix elements of the diagonal part of the density-
-operator ρL in the basis of H0. Consequently, I

SC may
be written as

ISC =
∑
ξ

(i+)ξξ(ρ
L
d )ξξ

=

∫
dε

∑
ξ

δ(ε− εξ)(i
+)ξξ(ρ

L
d )ξξ, (7)

using the ansatz of the δ-function integration on the
energy.

Carrying out the sum over ξ, while following the same
steps leading to Eq. (6), one obtains

ISC =
e

h

∫
dε

∑
a,σ

(Π+)εaσ(ρ
L
d )

ε
aσ, (8)

where, as has been shown in [7, 8], (ρLd )
ε
aσ =

∆w[−f ′(ε)]
∑

bσ′(Γ
−1

)εaσ|bσ′(Π
−)εbσ′ , where Γ̄−1 repre-

sents the matrix inverse of the matrix Γ whose elements
are (Γ )εa+|b+ = δab − |tLab|2, (Γ )εa−|b− = δab − |tRab|2,
(Γ )εa+|b− = −|rLab|2, (Γ )εa−|b+ = −|rRab|2 and Π− de-

�nes a column vector given by its components (Π−)εaσ =
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⟨ψ̄−,ε
aσ |i|ψ̄−,ε

aσ ⟩, where |ψ̄−,ε
aσ ⟩ =

√
L/va|ψ−,ε

aσ ⟩ are at a
given energy ε the ingoing scattering states normalized
to unit incoming �ux (Γ )εa−|b− = δab− |tRab|2(Π

−)ε(a+) =

(tLtL+)aa; (Π
−)ε(a−) = −(tRtR+)aa (Refs. [7, 8]).

Otherwise, ISC may be written in a more explicit form,
as

ISC =
e∆w

h

∫
dε[−f ′(ε)]

×
ε∑

a,σ

ε∑
b,σ′

(Π+)εaσ(Γ
−1

)εaσ|bσ′(Π
−)εbσ′ . (9)

At this level, let us mention that in the limit of weak
transmission, the ρLd matrix elements and thus ρSC are
negligible to ρK. Consequently, the self-consistent term,
Eq. (9), may be neglected such that I and IK will lead
approximately to the same conductance formula (see
below).

2.2. The magnetoconductance

De�ned as the ratio of the applied current I, Eq. (4),
to the induced potential di�erence inside the leads∆w/e,
the resulting magnetoconductance may easily be written

GL(B) = GK(B) +GSC(B). (10)

GK(B), the conductance resulting from IK, is given by
the Landauer�Büttiker formula [9, 13�15]:

GK(B) =
e2

2h

∫
dε[−f ′(ε)](Π+)tI, (11)

with t denoting the transpose and I is a 2n-column vector
de�ned by its components

(I)t =
︷ ︸︸ ︷
+1 + 1 . . .+ 1| − 1− 1 . . .− 1︸ ︷︷ ︸ .

However, making use of Eq. (9), the resulting conduc-
tance GSC(B) may also be expressed as an integral over
the energy

GSC(B) =
e2

h

∫
dε[−f ′(ε)](Π+)t(Γ

−1
Π−). (12)

Combining Eqs. (10), (11) and (12) and taking account
of the current conservation constraints [5, 9], we show af-
ter some algebraic manipulations that the many-channel
magnetoconductance which excludes the contacts may be
put in a more compact form as

GL(B) = 2
e2

h

∫
dε[−f ′(ε)](Π+)t(Γ

−1
I), (13)

where 2 stands for the spin degeneracy.
This is the sought formula of this work. At �rst sight,

we obtain a magnetoconductance formula which is ex-
plicitly independent from channel velocities. Moreover,
since the obtained formula is an implicit function on the
magnetic �eld, we can show that this formula remains
the same even in a zero magnetic �eld [8].

2.2.1. Uncorrelated channels
Alternatively, treating the case of uncorrelated chan-

nels with |tL(R)
ab |2 = Taδab, |rL(R)

ab |2 = Raδab it follows
after some algebraic manipulations that Eq. (13) may be
reduced to a sum of n single-channel Landauer formula

GL(B) = 2
e2

h

∫
dε[−f ′(ε)]

ε∑
a

Ta
Ra

. (14)

As it is apparent, in the limit of a ballistic conductor this
formula gives an in�nite conductance while the Kubo for-
mula de�ned by Eq. (11) gives a �nite conductance.
Moreover, this formula is what we will obtain experi-

mentally in four-lead geometry when the probes measur-
ing the induced voltage in the leads are ideally coupled
to the system.

2.2.2. Magnetic �eld reversal test
As a consequence to the unitarity of the scattering ma-

trix S [5, 9], Eq. (13) may be expressed like

GL(B) =
e2

h

∫
dε

× [−f ′(ε)]
[
(Π+)t(Γ

−1
I) + (Π−)t(Γ

−1
)tI

]
. (15)

However, since by reversing the magnetic �eld the scat-
tering matrix transposes S(B) = St(−B), its matrix el-
ements obey to

rL(R)
aa (B) = rL(R)

aa (−B) and t
L(R)
ab (B) = t

R(L)
ba (−B),(16)

we can check that GL(B) is in agreement with the On-
sager symmetry relations which assert that transport co-
e�cients are invariant under magnetic �eld reversal

GL(B) = GL(−B). (17)

3. Conclusion

Performing a self-consistent LRT in the presence of an
external magnetic �eld, we derived a multichannel mag-
netoconductance formula that excludes the e�ect of the
contacts and reduces in the limiting case of one channel
at zero temperature to the well-known Landauer con-
ductance formula. Moreover, we have shown that this
multichannel formula is, as it should be, well consistent
with the principle of microscopic reversibility.

Acknowledgments

The authors thank the referee for his suggestions and
recommendations. This work has been sponsored by
MESRS and DGRSDT Algeria.

References

[1] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

[2] R. Landauer, Philos. Mag. 21, 863 (1970).

[3] A.D. Stone, A. Szafer, IBM J. Res. Develop. 32, 384
(1988).

[4] Y. Imry, in: Perspectives on Condensed Matter
Physics, Eds. G. Grinstein, E. Mazenko, World Sci.,
Singapore 1986, p. 101; Y. Imry, Introduction to
Mesoscopic Physics, Oxford University, New York
1997.

[5] F. Benamira, Ph.D. Thesis, Université Montréal,
Canada 1996.

[6] M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys.
Rev. B 31, 6207 (1985).



724 F. Benamira, A. Abdellaoui

[7] A. Abdellaoui, F. Benamira, Phys. Status Solidi C 1,
3769 (2004).

[8] A. Abdellaoui, Ph.D. Thesis, Constantine, Algeria
2006.

[9] H.U. Baranger, A.D. Stone, Phys. Rev. B 40, 8169
(1989).

[10] S. Datta, Electronic Transport in Mesoscopic Sys-
tems, Cambridge University Press, Cambridge 1995.

[11] D.C. Langreth, E. Abrahamas, Phys. Rev. B 24, 2978
(1981).

[12] Y. Imry, R. Landauer, Rev. Mod. Phys. 71, S306
(1999).

[13] J.U. Nöckel, A.D. Stone, H.U. Baranger, Phys. Rev. B
48, 17569 (1993).

[14] K. Shepard, Phys. Rev. B 43, 11623 (1991).

[15] T. Dittrich, P. Hainggi, G.-L. Ingold, B. Kramer,
G. Schon, W. Zwerger, Quantum Transport and Dis-
sipation, Wiley-VCH, Weinheim 1998.


