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Evaporation of Micro-Droplets:

the �Radius-Square-Law� Revisited
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The range of applicability of a fundamental tool for studying the evolution of droplets, the �radius-square-law�,
was investigated both analytically and numerically, on the basis of the experimental results of our own as well as
of other authors. Standard issues were brie�y discussed. Departures from the �radius-square-law� caused by the
in�uence of impurities encountered in non-ideal liquids, by the kinetic and surface tension e�ects encountered for
small droplets or by thermal imbalance encountered in light-absorbing droplets were analysed. The entanglement
between the kinetic and impurities e�ects was studied numerically yielding a possible explanation to evaporation
coe�cient discrepancies found in the literature. An unexpected �radius-square-law� persistence in case of
non-isothermal evolutions of very small droplets in atmosphere nearly saturated with vapour was analysed. The
coexistence of the kinetic e�ects and the strong e�ects of surface tension was found responsible for this e�ect.

PACS: 64.70.F−, 64.70.fm, 68.03.Fg, 68.03.Hj, 05.70.Ln

1. Introduction

The ubiquitous processes of evaporation and conden-
sation are still not fully understood and the awareness
of that fact seems to increase [1, 2]. The continued in-
terest in detailed modelling of these processes, especially
concerning droplets, is strongly driven by their role in
the Earth ecosystem, as well as their indispensability in
technology. However, there is also a more fundamental
aspect of making the theories consistent. The continuous-
-medium descriptions of evaporation/condensation phe-
nomena (see e.g. [3, 4]) cannot grasp the details at molec-
ular level, so far (compare e.g. [5]). On the other hand,
though it seems possible to learn a lot with molecular
dynamics (MD) simulations (see e.g. [6, 7]), the large
scale, engineering applications of MD is far from feasi-
ble. A new attitude is often sought. The application of
statistical rate theory (SRT) [8, 9] or irreversible thermo-
dynamics [10, 11] make an example.
However, in wait for the scienti�c breakthrough, one

resorts to currently available methods. It turns out that
they can provide many valuable information, if they are
carefully applied. As far as the evaporation/condensation
of droplets is concerned the famous �radius-square-law� is
the fundamental tool (�diameter-square-law� is also met
in the literature). This law states that the square of
droplet radius tends to evolve linearly in time. In other
words, there is a conservation law for the evaporation/
condensation of droplets: the rate at which the surface
area changes is constant. The �radius-square-law� re�ects
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also an every-day-life intuition that the e�ectiveness of
drying depends on the surface area of the dried object.
In this work we study the range of applicability of this law
and its extensions to droplets of non-ideal liquids. Apart
from the evolutions which adhere to the �radius-square-
-law� quite obviously, we analyse cases which conform
to the �radius-square-law� rather unexpectedly, as well
as seemingly similar cases in which we encounter evident
departures from the �radius-square-law�. We refer to the
results of our own experiments (the datasets presented
here have not been published yet), as well as to the ex-
perimental results of other researchers. The description
of our experimental methods can be found in [12�14] and
a short summary is given in the next section.

2. Experimental setup and procedures

The single droplets that we studied, were levitated
in an electrodynamic quadrupole trap (compare e.g.
[15�19]), a variant of which we developed in our lab.
The trap was kept in a small (≈ 10 cm3) thermostatic
chamber. Droplets were injected into the trap with
the droplet-on-demand injector (compare e.g. [20, 21]),
a variant of which we developed. The injector was kept
inside the chamber ensuring that the initial tempera-
ture of the droplet was equal to that of the chamber.
On emerging from the injector nozzle, the droplets were
charged by charge separation in the external �eld of the
trap. The experimental setup schematic view is presented
in Fig. 1.
In experiments presented in this work we used: (i) ul-

trapure water produced in the lab (Milli-Q Plus, Mil-
lipore, resistivity ≈ 18 MΩ cm, total dissolved solids
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Fig. 1. Experimental setup schematic view.

< 20 ppb, total organic carbon ≤ 10 ppb, no suspended
particles larger than 0.22 µm, microorganisms ≤ 1 colony
forming unit per ml, silicates < 0.1 ppb and heavy met-
als ≤ 1 ppb), (ii) diethylene glycol (Fluka, BioUltra,
99.99 GC area %), (iii) triethylene glycol (Fluka, Bi-
oUltra, anhydrous, 99.96 GC area %), (iv) dimethyl sul-
foxide (Sigma�Aldrich, A.C.S. spectrophotometric grade,
99.99 GC area %) and (v) C60 nanocrystallites water
suspension. The suspension was prepared by sonicat-
ing fullerene powder (99% C60, MER) in ultrapure water
and �ltering through a �ltering paper (≈ 15 µm pore
size) and 450 nm pore size �lter (SM11306, Sartorius)
shortly before the experiment. In case of experiments
with water and with C60/water suspension droplets, the
chamber was �lled with water vapor/nitrogen mixture
at atmospheric pressure. In case of other liquids that
we studied, there was no intentional admixture of water
vapour to dry nitrogen.
The temporal evolution of the droplet radius a(t), was

obtained by analysing the angular distribution of scat-
tered light irradiance (angle-resolved static light scatter-
ing, see eg. [22�24] and references therein). In case of
pure liquids, exact Mie theory predictions were �tted to
the experimentally obtained scattering patterns, yield-
ing droplet radius with high precision (up to ±10 nm
for slowly evaporating liquids). In case of droplets of
suspension, an approximate (±150 nm) but more ro-
bust method, directly linking the droplet radius with
the characteristic angular frequency of scattering pattern
was used. Two coaxial, counter propagating laser beams
were used simultaneously for droplet illumination: green
(532.07 nm) p-polarised and red (654.25 nm) s-polarised.
Droplet heating and direct momentum transfer from the
beams were negligible.

3. Basic dynamics of droplet evolution

The problem of stationary evaporation of a free, spher-
ical, motionless droplet of a pure liquid in an in�-
nite, inert medium was �rst addressed by Maxwell (wet-
-bulb thermometer [25]). Despite known shortcomings of

Maxwellian description [26, 2], evaporation (or growth)
models based on it are still widely utilised and considered
generally adequate. Though originally Maxwell derived
his formulae simply from Fick's �rst law, they can be
further traced to more general equations of �uid dynam-
ics and, ultimately, to the Boltzmann equation (see e.g.
[27, 3]).
The framework of Maxwellian description consists of a

set of equations for the transport of mass and heat. The
mass transport equation usually attracts attention �rst,
since the mass of a micron-sized droplet is experimentally
accessible with high accuracy (via radius measurement),
while the temperature of such droplet only with rather
limited. The equation of the transport of mass can be
written in a form binding the droplet surface area (4πa2)
and the vapour density di�erence between the vicinity
of the surface ρsur and the reservoir (climatic chamber
(cc)) ρcc:

da2

dt
= 2

Dk

ρL
[ρcc(Tcc)− ρsur(TL)], (1)

where ρL is the density of the liquid and TL and Tcc

are the temperature of the droplet (surface) and the cli-
matic chamber respectively. Since the language of dif-
fusive transport is not suitable for sub-micron distances,
the above equation is generalised by the use of the ef-
fective di�usion coe�cient Dk, e�ective for sum-micron-
-sized droplets. This coe�cient encompasses, so-called,
gas kinetic correction, which will be discussed in Sect. 5.1.
For very small droplets or very small ρcc(Tcc)− ρsur(TL)
using the Kelvin equation is necessary

ρsur(TL) = ρsat(TL) exp

(
2Mσ

RTLρLa

)
, (2)

where σ is the surface tension of the liquid.
In general, the transfer of heat to/from the droplet

should be considered simultaneously with the transport
of mass. Under the assumption that evaporation/con-
densation is associated only with the heat transported
via conduction between the droplet and the reservoir
(�instantaneous evaporation�), a simple formula [4] is ob-
tained:

∆T =
hLVρL
2λk

da2

dt
, (3)

where∆T = TL−Tcc, hLV is the (e�ective, see Sect. 6) en-
thalpy of evaporation and λk is the e�ective thermal con-
ductivity (kinetic e�ects accounted for) of the ambient
gas�vapour mixture. The above assumption seems well
justi�ed for the stationary evolution of a small droplet
(compare [28, 29]), and is readily used.

4. The �radius-square-law� for isothermal

evolution

It can be easily demonstrated that the �radius-square-
-law� follows from the Maxwellian framework as a �rst
approximation. If there are no kinetic e�ects (Dk = D
and λk = λ, see Sect. 5.1), no surface tension e�ects
(vapour far from saturation: ρcc − ρsur ≫ 0, large
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droplets) and (nearly) isothermal evolution (TL ≈ const,
ρsur = const) Eq. (1) yields the �radius-square-law�:

a2(t)− a2(t = 0) = At, (4)

where

A = 2
D

ρL
(ρcc − ρsur). (5)

Obviously, ∆T = const consistently follows. Such mode
of evolution is illustrated with two examples in Fig. 2.
Both graphs concern relatively large droplets and mod-

Fig. 2. Temporal evolution of the square of the ra-
dius of evaporating droplet(s). Upper part: dimethyl
sulfoxide (DMSO) in N2 atmosphere initially void of
DMSO vapour (ρcc = 0), Tcc = 298 K, 1004 hPa pres-
sure. Data obtained from our experiment, every second
point displayed. Lower part: water in wet (dew point
at 229.62 K) N2 atmosphere, Tcc = 239.75 K, 593 hPa
pressure. Data from [30]. Dashed (red) lines correspond
to linear �ts � the �radius-square-law�.

erate rate of evaporation (small ∆T ). The upper graph
visualises an evolution corresponding to ρcc = 0 (sur-
rounding gas initially void of vapour), exempli�ed by
evaporation of a droplet of dimethyl sulfoxide (DMSO),
obtained from our experiments. The lower graph visu-
alises an evolution in gas�vapour mixture, exempli�ed by
evaporation of water droplets in wet nitrogen atmosphere
(moderately hight humidity), obtained from [30].

5. Departures from the �radius-square-law�

Though the �radius-square-law� seems to be a quite
robust tool, the departures are quite often encountered.
Here we shall discuss three classes of phenomena which
introduce non-linearity to a2(t) evolution: kinetic e�ects,
in�uence of impurities and additional heat. We shall also
study a case of seemingly unexpected adherence to the
�radius-square-law�.

5.1. Kinetic e�ects

The equations of �uid dynamics do not hold where
the gradients of described quantities are high. Such is
exactly the case in the vicinity of gas�liquid interface,
below the mean free path of the gas molecule from the
surface. Customarily, however not with full exactness
(see [31, 4, 32, 2, 13]), the transport of molecules in this
region is treated as ballistic and thus governed by the
Hertz�Knudsen�Langmuir (HKL) equation.
For a droplet in vacuum the mass transport equation

derived from kinetic theory of gases takes the following
form:

da

dt
= −αC

ρL
v(TL)ρsur(TL), (6)

where v is average thermal velocity of vapour molecules
and αC is the evaporation coe�cient. This coe�cient,
de�ned as the probability of crossing the interface by a
molecule impinging on it, was introduced by Knudsen [33]
to reconcile the experimental �ndings with the predic-
tions of the kinetic theory of gases. The experimentally
observed evaporation rate in the ballistic regime is never
greater than theoretically allowed by the kinetic theory.
Though conceptually seemingly simple, the value of this
coe�cient turned out to be rather elusive [5, 34, 29, 35].
In view of that some authors call for major changes to
the concept [6, 26, 1, 8].
Nonetheless, it is possible to combine the di�usive and

kinetic descriptions into a single equation. It is custom-
arily done by assuming that only at the distance ∆C from
the droplet both descriptions are valid simultaneously
(compare e.g. [36, 31]). This distance is comparable
with the mean free path of molecules of ambient gaseous
medium la but, in fact, the quantity has no clear physi-
cal meaning. The e�ective di�usion coe�cient in Eq. (1)
takes then the form

Dk(a) =
D

a/(a+∆C) + 4D/(aαCv(TL))
. (7)

Similarly, the e�ective thermal conductivity of ambient
gas may be expressed as

λk(a) =
λ

a/(a+∆T) + 4λ/(aαTρcP va(TL))
, (8)

where ρ, cP and va are density, speci�c heat capacity
under constant pressure, and the average thermal veloc-
ity of molecules of ambient gas. ∆T is an analog of ∆C

and αT is the thermal accommodation coe�cient (com-
pare [33]). Under standard temperature and pressure
(STP) conditions ∆C,∆T ≪ a and can be neglected for
micron-sized droplets. It can be also easily noticed that
kinetic e�ects, described with formulae 7 and 8, man-
ifest only for relatively small droplets. The departure
from the �radius-square-law� can be plainly visible only
for a ≪ 4D/(αCv(TL)), which is usually well below 1 µm.
An example of such departure that we attribute solely to
kinetic e�ects (compare next section) is shown in Fig. 3,
where our experimental results for a small triethylene
glycol droplet are presented. In many cases it may be
di�cult to notice the manifestation of kinetic e�ects for
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data presented in a2(t) form. However, if the experi-
mental a(t) dependence is su�ciently smooth a di�erent
representation is more e�cient. If Eqs. (1) and (3) are
not strongly interconnected via temperature-dependent
quantities, they can be both rewritten in a very conve-
nient, linear form of

1

ȧ
= P1a+ P2, (9)

(P1 and P2 being composite constants) which encom-
passes kinetic e�ects and can supersede the �radius-
-square-law� (see inset in Fig. 4).

Fig. 3. Temporal evolution of the square of the radius
of an evaporating droplet of triethylene glycol (TEG)
droplet in N2 atmosphere initially void of TEG vapour
(ρcc = 0), Tcc = 298 K, 987 hPa pressure. A straight,
dashed (red) eye-guiding line was added to demonstrate
the departure from the �radius-square-law�.

Fig. 4. Temporal evolution of the radius of an evap-
orating diethylene glycol (DEG) droplet in N2 atmo-
sphere initially void of DEG vapour (ρcc = 0), Tcc =
298 K, standard pressure. Evolution presented in a2(t)
form (every �fteenth experimental point) and in 1/ȧ(a)
form in the inset (all experimental points). Dashed (red)
lines correspond to linear �ts for: t < 300 s in main �g-
ure and 3 < a < 12.5 µm in the inset.

It is worth noticing that the evaporation into the
atmosphere (initially) void of vapour stays isothermal
even when the kinetic e�ects manifest for small droplets.

Equations (1) and (3) for ρcc = 0 can be combined into

∆T =
Dk

λk
hLVρsur(TL). (10)

Then, if ρsur(TL) ≈ ρsat(TL) and ∆T ≪ Tcc, TL, the
Clausius�Clapeyron equation may be employed. If, fur-
ther on, hLVM∆T/(RTccTL) is small, ρsat(TL) can be
expressed in a simple form

ρsat(TL) ≈ ρsat(Tcc)

(
1 +

hLVM

R

∆T

T 2
cc

)
. (11)

Combining Eqs. (10) and (11) allows to disentangle ∆T :

1

∆T
= − λk

Dk

1

hLVρsat(Tcc)
− hLVM

RT 2
cc

. (12)

Now, from Eqs. (7) and (8), it can be seen that the tem-
poral evolution of ∆T originates from λk/Dk only. Since
λk(a)/Dk(a) is always nearly constant so is ∆T . Under
the assumption of ∆C,∆T ≪ a the details of this weak
variability can be easily seen

λk(a)

Dk(a)
=

λ

D

a+ 4D/(vαC)

a+ 4λ/(vaαTρcP )
. (13)

Now the convex/concave behaviour of this expression de-
pends on the proportion of

4λ/(vaαTρcP )

4D/(vαC)
≈ λ

cP ρD
= Le, (14)

where Le is the Lewis number. When the transfer of heat
is more e�cient than the transport of mass (Le > 1)
∆T (a) is convex, otherwise (Le < 1) ∆T (a) is concave.
These e�ects are, however, very minute, and seem to be
of little practical signi�cance.

5.2. The in�uence of impurities

A dramatic departure from the �radius-square-law�
may ensue from the in�uence of impurities. Since the
experimentally accessible liquids are never ideally pure,
some non-linearity in a2(t) may always be anticipated,
especially for evaporation leading to signi�cant increase
of impurities concentration. An example of such evap-
oration of diethylene glycol droplet, found in our ex-
periments, is presented in Fig. 4. The departure from
�radius-square-law� for t > 300 s in main �gure and from
equation 9 for a < 3 µm (corresponding to t > 440 s
in main �gure) in inset is clearly visible. This departure
for smaller radii makes an example of cooperation of ki-
netic e�ects and the in�uence of impurities (via Raoult's
law). It turns out that this ambiguity can be resolved
only partially even with 9 representation.
The in�uence of ideally soluble, non-surface-active,

non-volatile impurity can be modelled in the simplest way
by expressing ρsur with the (simpli�ed) Köhler equation
[37, 31]:

ρsur(TL) = ρsat(TL) exp

(
−ns

(a/a0)
3 − ns

)
, (15)

where ρsat(TL) is the saturated (equilibrium) vapour den-
sity corresponding to temperature TL, a0 is the initial
droplet radius and ns is approximately equal to the initial
mass fraction of impurities. Again, if necessary Eqs. (2)
and (15) can be combined.
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In order to investigate the entanglement of the kinetic
e�ects with the in�uence of impurities, we �rst performed
(forward) numerical simulations using Eqs. (1), (3), (7)
and (8) together with (15) to imitate the evaporation
of a water droplet into dry nitrogen (ρcc = 0, stan-
dard temperature and pressure (STP) conditions) ver-
sus the contents of impurities (represented by ns). The
dependence of quantities and parameters upon tempera-
ture was meticulously taken into account. We assumed
αT = 0.15 and αC = 0.14. The simulated 1/ȧ(a) for 3
values of ns are presented in Fig. 5.

Fig. 5. Simulation of the e�ect of impurities upon
droplet radius temporal evolution for water droplets
evaporating into dry N2 atmosphere under STP con-
ditions. Evolution shown in 1/ȧ(a) representation. ns

is proportional to the initial mass fraction of impurities.
Solid (black) line: no impurities, ns = 0; dashed (red)
line: ns = 0.002; dotted (blue) line: ns = 0.005. The
region of apparently linear evolution is boxed. A small
portion of this region is magni�ed in inset.

Fig. 6. The values of D (open circles) and αC (solid
dots) retrieved by �tting Eq. (9) (neglecting the Köh-
ler equation) to the data from simulations (exempli�ed
in Fig. 5) versus ns (impurities concentration) used in
simulation. It can be seen that neglecting the e�ect of
impurities in data analysis leads to signi�cant errors.

The concentration of impurities grows as the droplet
evaporates, and for high concentration the in�uence of

impurities is clearly visible as highly non-linear region
(see especially 1/ȧ representation). Though this region
can be easily isolated and excluded from consideration,
the in�uence of impurities in seemingly linear region (box
and inset in Fig. 5) can be easily overlooked, especially in
view of experimental uncertainties and noise. Only when
studied versus impurities initial concentration, it can be
noticed that the higher ns the slower the evolution, even
in seemingly una�ected region. Moreover, if we try to
retrieve D and αC from the simulation data by simply
�tting (9) (neglecting the Köhler equation) it turns out
that the retrieved values are much di�erent from those
supplied for the simulation (see Fig. 6). Even small, prac-
tically unavoidable amount of impurities initially present
in the liquid, introduces error of several percent! Avoid-
ing the problem requires utilising liquids of ultra-high
purity, which is possible only in limited cases, e.g. for
water. The disambiguation of the kinetic e�ects from
the in�uence of impurities requires introducing a model
describing the in�uence of impurities. Due to usually di-
verse and not exactly known type of impurities adopting
a proper model may be a di�cult task.

5.3. Non-isothermal evaporation with additional
heat source

The last example of evolution disobeying the �radius-
-square-law�, we would like to present, is the non-
-isothermal evaporation with additional source of heat.
This mode of evaporation is encountered e.g. in burning
fuel droplets and in droplets absorbing radiation (e.g.
atmospheric aerosols, see e.g. [38]). An example of the
later is presented in Fig. 7. A droplet of C60 fullerene
nanocrystallite suspension in water was exposed to laser
radiation and thus mildly heated.
As it was discussed in Sect. 5.2, if the suspension

was non-absorbing, we would expect evolution slowing-
-down in respect of pure liquid (dashed (red) versus solid
(green), radius-square-law-obeying line in Fig. 7) because
of dispersed phase concentration change (Raoult's law)
and/or surface blocking caused by scavenging of the dis-
persed phase by moving interface. In case of light absorb-
ing suspension, �rst we observe evaporation speed-up in
respect of the �radius-square-law�, which indicates that
the e�ect of heating prevails over the e�ects of suspen-
sion concentration change. At the later stage we indeed
observe a rapid evaporation slow-down due to dispersed
phase concentration change. The speci�c information
carried by the departure from �radius-square-law�, can
still be recovered in case of evaporation with additional
source of heat. However, it requires further extensions
to the Maxwellian framework, which is beyond the scope
of this work. As the result of the entanglement between
the e�ects of dispersed phase concentration change and
of temperature change, both transport equations would
have to be used simultaneously. Though the mass trans-
port equation remains seemingly simple, the heat balance
becomes quite complicated (and temperature change may
be high). We leave the detailed discussion of this issue
for future works.
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Fig. 7. Black dots: The temporal evolution of the
radius of a droplet of suspension of C60 fullerenes
nanocrystallites in water, evaporating in humid air
(RH > 0.9), Tcc = 288 K at atmospheric pressure. Solid
(green) and dashed (red) lines: evaporation of a droplet
of pure water and of water with non-absorbing impuri-
ties respectively, calculated with the model for the above
parameters.

6. Non-isothermal evolution of small droplets �

the persistence of the �radius-square-law�

A very interesting case of rather unexpected adherence
to the �radius-square-law� is encountered for very small
droplets quickly evolving in nearly saturated atmosphere.
In view of considerations from Sect. 5.1, we would rather
expect a non-linearity introduced to the �radius-square-
-law� by the kinetic e�ects then. The most convincing
are the experimental results of the University of Vienna/
University of Helsinki (UV/UH) group (see lower graph
in Fig. 8 and e.g. [39�41, 36]) obtained for droplets grow-
ing in an atmosphere mildly supersaturated with vapour.
However, similar e�ect seems to be present for nanoscopic
droplets of the Lennard�Jones liquid evaporating into its
own vapour (compare Figs. 3 and 4 in [6]). Our own
measurements of moderately fast evaporation of water
droplets into wet N2 atmosphere (see upper part of Fig. 8)
are not contradicting but are not conclusive since the
droplets were too large.

It is possible to demonstrate with Maxwellian model
(both analytically and with numerical simulations) that
the kinetic e�ects do manifest in this case, though in an
unexpected way. In order to do so, both equations of
transport: of heat and of mass must be used. Addition-
ally, when ρcc ≃ ρsat, using the Kelvin equation is in-
dispensable. Similarly as in Sect. 5.1, expanding exp in
both Kelvin and Clausius�Clapeyron equations enables
disentangling ∆T . Under the easily ful�lled condition of
∆T ≪ Tcc, TL we get

∆T =
KC

a(1−KB)
, (16)

where

K = −ρsathLV
Dk

λk
, B =

hLV

RT 2
cc

, C =
2Mσ

RTccρL

Fig. 8. Temporal evolution of droplet radii presented
in a2(t) form. Upper part: moderately fast evaporation
of a water droplet into wet N2 atmosphere (RH > 0.97),
Tcc = 298 K, atmospheric pressure. Data from our ex-
periments. Lower part: growth of water droplets con-
densing on silver nanoparticles in wet air (RH = 1.37),
Tcc = 268.2 K, 983 hPa pressure. Data from �Ag03�
set from [36]. Dashed (red) lines correspond to �radius-
-square-law�, solid (blue) lines correspond to full model
�ts (no impurities).

are constants. The relative variability of a is inherited
by ∆T . Thus, there appears a negative feedback via ∆T .
This is a rather unexpected �nding that an evolution of
a droplet near mechanical vapour-liquid equilibrium is
non-isothermal while an evolution far from mechanical
vapour-liquid equilibrium is. Employing Eq. (3) and for-
mula (7) under the assumption of ∆C,∆T ≪ a leads to
the mass transport equation in the following form:

da2

dt
= − FD

a+ 4D/(vαC)
, (17)

where

F =
2ρsat
ρL

C

1−KB
.

It can be easily noticed that under the condition of
a ≪ 4D/(vαC)

da2

dt
= −F

4
vαC. (18)

It explains why the �radius-square-law� is valid under the
considered conditions. However, the proportionality co-
e�cient is rather unexpected, since for evaporation of
small droplets into dry atmosphere we �nd da/dt ∼ αC.
The whole �nding gives a strong impression that the ex-
isting description is more complicated than the process
following a simple �radius-square-law�.

While the kinetic e�ects visibly dominate, the evap-
oration/condensation coe�cient αC can be measured.
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This is certainly the case for moderately fast evapo-
rating water droplets in our measurements (see upper
graph in Fig. 8), though the e�ect is obscured as the
droplets are not very small. It is, however, fundamentally
true for much faster evolutions of even smaller droplets
from UV/UH group experiments (lower graph in Fig. 8).
Adopting the models discussed in this work to nanoscopic
droplets of Ref. [6] and �nding the evaporation coe�cient
there requires much e�ort and we intend to present it in
a separate paper.
In both graphs in Fig. 8 we present linear �ts corre-

sponding to the �radius-square-law� as well as numeri-
cal simulations performed with the unabridged model.
For UV/UH experiment (�Ag03� set) we actually found
the value of αC ≈ 0.5, which is by a factor of 2 smaller
than proposed by UV/UH group and by a factor of 2
larger than proposed by Boston College/Aerodyne Re-
search Inc. group [39]. Too high value of αC may follow
from too small value of hLV taken. Enthalpy of evapo-
ration, playing a vital role in the heat transport equa-
tion, is de�ned and measured under equilibrium condi-
tions and may be inadequate for an evolution far from
thermal equilibrium. However, a proper correction to
hLV seems not to be known.

7. Discussion and conclusions

We have revisited the �radius-square-law� for evapo-
ration of micro-droplets of non-ideal liquids and suspen-
sions. We brie�y discussed standard issues and concen-
trated on departures from the �radius-square-law� as well
as on unexpected applicability case. To our knowledge,
the last two issues were not discussed in the literature in
a manner we propose, and we hope our �ndings may be
of some help.
The temporal evolution of the square of droplet ra-

dius is linear primarily for large droplets of pure liq-
uids. The vapour di�usion coe�cient D plays then the
role of proportionality factor for this �radius-square-law�:
da2/dt ∼ D. The evolution is isothermal then: the
droplet temperature drop ∆T is constant though not
equal to zero. The apparent linearity of a2(t) is retained
even for relatively small droplets and relatively fast evap-
oration/condensation, since the a2(t) form is not very
sensitive to kinetic e�ects. The linear form of 1/ȧ(a),
encompassing kinetic e�ects, is more sensitive and con-
venient, but requires very smooth a(t) dependence.
For evaporation into atmosphere (initially) void of

vapour the process continues to be isothermal. Though
∆T can be signi�cant, its temporal evolution is usu-
ally very minute. On the other hand, the evolution of
very small droplets in an atmosphere nearly saturated
with vapour is non-isothermal. Then, the persistence
of the �radius-square-law� is caused by coexistence of
the kinetic e�ects and the strong e�ects of surface ten-
sion. Strangely, the evaporation coe�cient αC replaces
D as proportionality factor for the �radius-square-law�
then: da2/dt ∼ αC, while in dry atmosphere small

droplets evolution do not obey the �radius-square-law�:
da/dt ∼ αC. The intriguing fact,that the �radius-square-
-law� holds for very small droplets and fast evaporation/
condensation can be perceived just as a speci�c case of
a more complex model. However, simple experimental
results call rather for a simple description, which is still
being sought.
Serious departures from the �radius-square-law� (or its

derivatives) may be caused e.g. by the in�uence of im-
purities encountered in non-ideal liquids, by the kinetic
and surface tension e�ects encountered for small droplets
or by thermal imbalance encountered in light-absorbing
droplets. We adhere to the opinion that in all such cases
it is still possible to extract useful information from a(t)
dependence, though much care must be taken. Most
remarkably, the values of thermodynamical parameters
(e.g. di�usion and evaporation/condensation coe�cients)
found from the a(t) dependence may be severely in�u-
enced by the e�ects of impurities, if unaccounted for.
This fact seems to be quite often overlooked. Precise
accounting for the e�ects of impurities may be di�cult,
however simple introducing of the Köhler equation yields
a good approximation.

Acknowledgments

This work was supported by the Ministry of Sci-
ence and Higher Education/European Science Founda-
tion (ESF/PESC EPSD program) as a scienti�c project
2010�2013 and by Polish Ministry of Science and Higher
Education under grant No. N N202 126837.

References

[1] F. Duan, I. Thompson, C.A. Ward, J. Phys. Chem. B
112, 8605 (2008).

[2] R. Hoªyst, M. Litniewski, J. Chem. Phys. 130,
074707 (2009).

[3] W.A. Sirignano, Fluid Dynamics and Transport of
Droplets and Sprays, Cambridge University Press,
Cambridge 2010.

[4] N.A. Fuchs, Evaporation and Droplet Growth in
Gaseous Media, Pergamon, London 1959.

[5] G.M. Nathanson, P. Davidovits, D.R. Worsnop,
C.E. Kolb, J. Phys. Chem. 100, 13007 (1996).

[6] R. Hoªyst, M. Litniewski, Phys. Rev. Lett. 100,
055701 (2008).

[7] T. Ishiyama, T. Yano, S. Fujikawa, Phys. Fluids 16,
2899 (2004).

[8] A.J.H. McGaughey, C.A. Ward, J. Appl. Phys. 91,
6406 (2002).

[9] A.H. Persad, C.A. Ward, J. Chem. Phys. B 114, 6107
(2010).

[10] V. Babin, R. Hoªyst, J. Phys. Chem. B 109, 11367
(2005).

[11] V. Babin, R. Hoªyst, J. Chem. Phys. 122, 024713
(2005).

[12] D. Jakubczyk, G. Derkachov, T. Do Duc, K. Kolwas,
M. Kolwas, J. Phys. Chem. A 114, 3483 (2010).



716 D. Jakubczyk et al.

[13] M. Zientara, D. Jakubczyk, K. Kolwas, M. Kolwas,
J. Phys. Chem. A 112, 5152 (2008).

[14] D. Jakubczyk, G. Derkachov, W. Bazhan,
E. �usakowska, K. Kolwas, M. Kolwas, J. Phys. D
37, 2918 (2004).

[15] F.G. Major, V.N. Gheorghe, G. Werth, Charged Par-
ticle Traps, Springer, Berlin 2005.

[16] E.J. Davis, M.F. Buehler, T.L. Ward, Rev. Sci. In-
strum. 61, 1281 (1990).

[17] S. Arnold, Rev. Sci. Instrum. 62, 3025 (1991).

[18] R.A. Shaw, D. Lamb, J. Chem. Phys. 111, 10659
(1999).

[19] E.E. Allison, B.R.F. Kendall, Rev. Sci. Instrum. 67,
3806 (1996).

[20] H. Ulmke, T. Wriedt, K. Bauckhage, Chem. Eng.
Technol. 24, 265 (2001).

[21] E.R. Lee, M.L. Perl, Universal Fluid Droplet Ejector,
1999, U.S. Pat. No. 5943075.

[22] S. Dehaeck, J.P.A.J. van Beeck, Exp. Fluids 45, 823
(2008).

[23] B. Steiner, B. Berge, R. Gausmann, J. Rohmann,
E. Rühl, Appl. Opt. 38, 1523 (1999).

[24] N. Rie�er, R. Schuh, T. Wriedt, Meas. Sci. Technol.
18, 2209 (2007).

[25] J.C. Maxwell, Collected Scienti�c Papers 11, 625
(1890).

[26] C.A. Ward, G. Fang, Phys. Rev. E 59, 429 (1999).

[27] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular
Theory of Gases and Liquids, Wiley, New York 1954.

[28] J.D. Smith, C.D. Cappa, W.S. Drisdell, R.C. Cohen,
R.J. Saykally, J. Am. Chem. Soc. 128, 12892 (2006).

[29] W.S. Drisdell, C.D. Cappa, J.D. Smith, R.J. Saykally,
R.C. Cohen, Atmos. Chem. Phys. 8, 6699 (2008).

[30] A.M. Moyle, P.M. Smidansky, D. Lamb, in:
Am. Meteorological Soc. Proc. 12th Conf.
Cloud Physics, Madison (WI) 2006, https://
ams.confex.com/ams/pdfpapers/111916.pdf .

[31] H.R. Pruppacher, J.D. Klett, Microphysics of Clouds
and Precipitation, Kluwer, Dordrecht 1997.

[32] G. Fang, C.A. Ward, Phys. Rev. E 59, 417 (1999).

[33] M. Knudsen, The Kinetic Theory of Gases: Some
Modern Aspects, Methuen, London 1950.

[34] P.A.J. Bagot, C. Waring, M.L. Costen, K.G. McK-
endrick, J. Phys. Chem. C 112, 10868 (2008).

[35] F.R. McFeely, G.A. Somorjai, J. Phys. Chem. 76,
914 (1972).

[36] P.M. Winkler, A. Vrtala, P.E. Wagner, M. Kulmala,
K.E.J Lehtinen, T. Vesala, J. Geophys. Res. 111,
D19202 (2006).

[37] S.K. Friedlander, Smoke, Dust and Haze Fundamen-
tals of Aerosol Dynamics, Oxford University Press,
New York 2000.

[38] C. Erlick, V. Ramaswamy, J. Geophys. Res. 108,
2963 (2003).

[39] P. Davidovits, D.R. Worsnop, J.T. Jayne, C.E. Kolb,
P. Winkler, A. Vrtala, P.E. Wagner, M. Kulmala,
K.E.J. Lehtinen, T. Vesala, M. Mozurkewich, Geo-
phys. Res. Lett. 31, L22111 (2004).

[40] A. Laaksonen, T. Vesala, M. Kulmala, P.M. Winkler,
P.E. Wagner, Atmos. Chem. Phys. Discuss. 4, 7281
(2004).

[41] P.M. Winkler, A. Vrtala, P.E. Wagner, M. Kulmala,
K.E.J. Lehtinen, T. Vesala, Phys. Rev. Lett. 93,
75701 (2004).


