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On the E�ects of the Interaction Potential Parameters
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In this work the e�ect of the potential parameters on the condensate fraction and the critical temperature of
neutral many-bosonic system are investigated. A many-body technique called the static �uctuation approximation
is used in this study. The interaction potential is modeled by two linear terms. The condensation fraction and
critical temperature were found to decrease with increasing the strength or the range of the repulsive part of the
potential. On the other hand, the condensation fraction and critical temperature increase with increasing the
depth or range of the attractive part of the potential.
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1. Introduction

The Bose�Einstein condensation (BEC) is one of the
fascinating quantities for neutral many-bosonic systems.
Determination of the critical temperature and conden-
sate fraction at �nite temperature of such systems is one
of the challenges for the many-body approaches. Most
of the many-body approaches are well established at low
temperatures or for weakly interacting systems. In this
work we shall use the static �uctuation approximation
(SFA) approach [1] to calculate the condensate fraction
and critical temperature for neutral many-bosonic sys-
tem. The role of the potential parameters, the potential
strength of the repulsive part, range of the repulsive in-
teraction, depth of the attractive part, and range of the
attractive potential on these quantities are investigated.
The neutral many-bosonic systems are characterized

by extraordinary properties. Many theoretical techniques
and formalisms were applied to explain their observed
behavior. Nevertheless, some basic properties of these
systems remain not well understood. Such systems re-
veal quantum-mechanical e�ects on a macroscopic scale
(e.g. super�uidity and BEC) and hydrodynamics on a mi-
croscopic scale (vortices; quantum hydrodynamics). The
relation, if any, between BEC and super�uidity remains
unclear.
In the present work we shall consider an extended sys-

tem ofN particles each of massm, occupying a volume Ω .
Further, we shall assume that these particles interact
with each other through a model potential consisting of
two linear parts. Such a model potential gives us an op-
portunity to study the e�ect of the various potential pa-
rameters on condensate fraction and critical temperature
of the system.
The SFA adopted in this study has already been ap-

plied to weakly and strongly many-body systems [1�8].
This approach is relatively simple compared to other
many-body approaches in the sense that it is not based
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on Green's functions or Feynman's diagrams. Despite
the simplicity of the approach, it is applicable, at least
in principle, to any arbitrary system. It is based on the
replacement of the square of the local �eld operator by
its mean value. The physical implication is that the true
quantum-mechanical spectrum of the local-�eld operator
is replaced by a distribution around its expectation value.
In fact, this is the only approximation that appears in
the SFA.
In a previous work, a simple step potential model is

used to investigate the role of the repulsive interaction
on such systems [7]. This work is a continuation for that
with more realistic potential consisting of repulsive and
attractive potential. The strength of the potential natu-
rally a�ects the condensate fraction, critical temperature
and other properties of the system. This topic was stud-
ied by many workers [9, 10].
For the ideal Bose gas, the condensate fraction is 100%

at absolute zero temperature. Of course, the amount
of condensation will be di�erent when the potential is
switched on. The condensate fraction for weakly inter-
acting systems is greater than that for strongly interact-
ing systems [11] such as liquid 4He, where the condensate
fraction was down to 10%. Also, the potential e�ect on
the critical temperature can immediately be seen from
the fact that the critical temperature in liquid 4He is
≈ 2.17 K; whereas the corresponding theoretical value
calculated for an ideal Bose gas whose constituent bosons
have a 4He-mass is 3.14 K [12, 13].
There is a growing interest in BEC and thermodynamic

properties of bosonic systems [14, 15]. The BEC plays
an important role in the theory of physical systems; it is
masked either by a strong interaction or by the complex-
ities of the system [16].
Various microscopic techniques have been used over

the years to study neutral many bosonic systems such
as the single-particle Green-function method [17], the
variational track which includes the highly acclaimed
correlated-basis-function method [18] and the density-
-functional approach [19].
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Due to the cooling development of experimental tech-
niques, the �rst gases to be cooled to degeneracy tem-
peratures and display BEC were alkali gases such as
rubidium [20], sodium [21] and lithium [22]. Later,
BEC was obtained in spin-polarized hydrogen atoms [23];
metastable 4He [24] and other atomic species are also un-
der active investigation for Bose condensation.
Following the introduction, the SFA formalism is

brie�y presented in Sect. 2 for a neutral many-bosonic
system. Section 3 is devoted for results and discus-
sion. Summary and concluding remarks are presented
in Sect. 4.

2. Static �uctuation approximation

The basic assumptions in SFA are based on [1]: the
square of the local-�eld operator �uctuation ∆Ê2

k can be
replaced by its mean value ∆Ê2

k = ⟨∆Ê2
k⟩ = Φ2

k, the
Hamiltonian of the system can be written as a linear
combination of a Hermitian local-�eld operator Êk and
the occupation number operator n̂k:

Ĥ =
∑
k

Êkn̂k, (1)

where the summation is over all states, the local-�eld
operator commutes with the creation and annihilation
operators.
In this section we will present brie�y the basic elements

of the SFA for neutral many bosonic systems. In the
Heisenberg picture, the time evolution of the creation
operator b̂+k (τ) is given by

b̂+k (τ) = exp(τĤ)b̂+k (0) exp(−τĤ), (2)
where τ ≡ it, k is the wave number describing a speci�c
state and Ĥ is the Hamiltonian. The equation of motion
for the creation operator in this picture can be written
as

db̂+k (τ)

dτ
=

[
Ĥ, b̂+k (τ)

]
. (3)

Based on the SFA assumptions, the equation of motion
becomes

db+k (τ)

dτ
=

[
Ĥ, b+k

]
= Êkb

+
k . (4)

The local-�eld operator Êk calculated from Eq. (4) is

Êk =
[
b̂k,

[
Ĥ, b̂+k

]]
. (5)

The physical quantities: occupation number, mean
value of the local-�eld operator, and �uctuation in the
local-�eld operator, can be calculated by the aid of the
SFA. To evaluate these quantities based on the SFA, the
grand Hamiltonian in second quantization of the system
should be determined. The grand Hamiltonian describing
the neutral many-bosonic systems in the second quanti-
zation can be written as [1]:

Ĥ =
∑
k

(
~2k2

2m
− µ

)
b̂+k b̂k +

1

2

∑
k

V (k)ρ̂kρ̂−k, (6)

where V (k) =
∫
V (r) exp(ik · r)dr, ρ̂k ≡ 1

Ω

∑
q b̂

+
k+q b̂q,

and µ is the chemical potential of the system.

The local-�eld operator, Êk, is calculated from Eqs. (5)
and (6) to be

Êk =
[
b̂k,

[
Ĥ, b̂+k

]]
= ε(k) +

1

Ω

∑
q

W (k, q)n̂q, (7)

where W (k, q) ≡ V (0) + V (k − q) and ε(k) = ~2k2

2m − µ.
The other quantities can be calculated from the general-
ized long-range equation of the system given by [1]:

⟨n̂kÂ⟩ = η0(k)
⟨
Â
⟩
+ η1(k)

⟨
∆ÊkÂ

⟩
, (8)

where

η0(k) ≡
1

2

[
1

exp
(
β
(⟨

Êk

⟩
+ φk

))
− 1

+
1

exp
(
β
(⟨

Êk

⟩
− φk

))
− 1

]
, (9)

η1(k) ≡
1

2φk

[
1

exp(β(⟨Êk⟩+ φk))− 1

− 1

exp(β(⟨Êk⟩ − φk))− 1

]
, (10)

and Â is an arbitrary operator commuting with local-�eld
operator, creation, and annihilation operators.

We can get the occupation number of particles by sub-
stituting Â = 1 in Eq. (8) yielding

⟨n̂k⟩ = η0(k) + η1(k)
⟨
∆Êk

⟩
. (11)

The mean value of the �uctuation is zero; hence the above
equation takes the following form:

⟨n̂k⟩ = η0(k). (12)
It is more convenient to rewrite the long-range equation
in terms of the deviation of the occupation number op-
erator, de�ned as:

∆n̂k ≡ n̂k − ⟨n̂k⟩. (13)
So the long-range equation can be written as⟨

∆n̂kÂ
⟩
= η1(k)

⟨
∆ÊkÂ

⟩
. (14)

The equation describing the pair correlation function
can be obtained by substituting Â = ∆n̂q in Eq. (14)
with k ̸= q:

⟨∆n̂k∆n̂q⟩c = η1(k)
⟨
∆Êk∆n̂q

⟩
,

⟨∆n̂k∆n̂q⟩c =
η1(k)

Ω

∑
p

W (k,p)⟨∆n̂p∆n̂q⟩. (15)

The square of the �uctuation in the number of parti-
cles cannot be calculated from the long-range equation,
because Â = ∆n̂k does not commute with the creation
or annihilation operators. The square of the �uctuation
in the occupation number of particles is given as [1]:⟨

(∆n̂k)
2
⟩
= ⟨n̂k⟩(1 + ⟨n̂k⟩)

+
2η1(k)

Ω

∑
p

W (k,p)⟨∆n̂p∆n̂k⟩. (16)



706 M.K. Al-Sugheir et al.

By substituting Â = ∆Êk in Eq. (14) we can obtain
the �uctuations in the local-�eld operator

η1(k)φ
2
k =

1

Ω

∑
p

W (k,p)⟨∆n̂k∆n̂p⟩. (17)

To complete the closed set of nonlinear integral equations
the chemical potential must be calculated from the con-
dition

N =
∑
k

⟨nk⟩. (18)

The energy levels for in�nite system are close to each
other, so that the summation in the nonlinear inte-
gral Eqs. (7), (15)�(18) can be replaced by integration:∑

k −→ Ω
(2π)3

∫
dk. The closed set of nonlinear integral

Eqs. (7), (12), (15)�(18), can be solved numerically by an
iterative method. Throughout this work a natural sys-
tem of units will be used. In this system of units we set
~ = 1 = m. The 4He Bose system will be considered
through the numerical calculation, so the conversion fac-
tor will be ~2

m = 12.120048 K Å2 where m is the 4He
atomic mass.
The interaction potential model used in this work is

given by

V (r) =

{
a1r + a2, r < r1,

b1r + b2, r1 < r < r2.
(19)

The model potential consists of two linear terms. The
�rst term starts from r → 0 to the equilibrium position
at r1 with maximum potential strength a2 at r = 0. The
other term starts from r1 to vanishing potential at r2.
The potential depth was found to be d = a1r1 + a2 =
b1r1 + b2. According to the continuity condition of the
potential and V (r) vanishing at r = r2, we have the po-
tential parameters relations

b1 =
d

r1 − r2
, a1 =

d− a2
r1

. (20)

In this work, the e�ect of the repulsive potential
strength a2, potential depth d, equilibrium position r1,
and attractive potential range r2 on the condensate frac-
tion and on the critical temperature is studied.

3. Results and discussion

The e�ect of the strength of the repulsive part of the
potential on the condensate fraction and critical tempera-
ture is studied. r1 and r2 are taken as constants of values
of 3.0 Å and 5.0 Å, respectively and the potential depth
is taken to be d = −0.01a2. The condensate fraction as a
function of temperature for di�erent values of a2 is shown
in Fig. 1. These results indicate that the strength of the
repulsive part does not a�ect the condensate fraction in
the ground state. At low temperatures, the system un-
der this potential model behaves like an ideal Bose gas.
This means that at low temperatures, the contribution
of the interaction term on the energy spectrum of the
system is constant and just shifts the chemical potential
of the system. As the temperature increases the e�ect
of the potential strength arises, where the condensate

fraction decreases with increasing the potential strength.
The transition from the condensate state to the excited
state occurs smoothly in the ideal Bose gas (a2 = 0 K).
As the potential strength increases this transition occurs
abruptly at large potential strengths (a2 = 25 K). This
e�ect of the potential strength is expected because as the
repulsive part strength increases the inter-particle spac-
ing increases. In such situation the de Broglie wavelength
becomes smaller than the inter-particle spacing, which re-
duces the probability of overlapping between the waves
associated with adjacent particles. As a result, the con-
densate fraction decreases.

Fig. 1. The condensate fraction as a function of tem-
perature calculated at r1 = 3.0 Å, r2 = 5.0 Å, d =
−0.01a2 for di�erent values of a2.

Fig. 2. The critical temperature as a function of the
repulsive part strength a2, at r1 = 3.0 Å; r2 = 5.0 Å;
and d = −0.01a2.

The critical temperature (the temperature at which
the condensate fraction vanishes) at di�erent values of
potential strength a2 is determined from Fig. 1 and dis-
played in Fig. 2 as a function of a2. The results show that
the critical temperature, Tc, decreases as the strength of
the repulsive part of the potential increases. Also, the
variation in the critical temperature becomes smaller for
higher repulsive part strengths. This means that the re-



On the E�ects of the Interaction Potential Parameters . . . 707

pulsive part of the potential lowers the critical temper-
ature and transforms the system to the excited state at
lower temperatures.

Fig. 3. The condensate fraction as a function of den-
sity at r1 = 3 Å, r2 = 5.0 Å, d = −0.01a2, and
T = 2.05 K for two values of a2.

Fig. 4. The condensate fraction as a function of tem-
perature T at a2 = 15.0 K, r1 = 3.0 Å, and r2 = 5.0 Å,
for di�erent depths of the attractive part.

Figure 3 shows the density dependence of the conden-
sate fraction of the system. It is noted that the interact-
ing system based on the used potential model behaves
like an ideal gas. At low density, the condensate fraction
increases rapidly reaching a saturation value at a certain
density called the saturation density. This result is ex-
pected because BEC occurs if the de Broglie wavelength
is comparable or greater than the inter-particle spacing.
As the density of the system increases the inter-particle
spacing decreases and the probability of overlapping be-
tween de Broglie waves associated with each particle in-
creases.
The role of the potential depth on the condensate frac-

tion was examined and the results are shown in Fig. 4.
As expected, at low temperature the interaction poten-
tial does not play any role on the condensate fraction.

In other words the system behaves like an ideal Bose gas
system. Contrary to the repulsive part of the potential
strength, the condensate fraction and the critical temper-
ature increase as the potential depth increases. In addi-
tion, the transition from the condensation state to the
excited state occurs smoothly as the potential depth in-
creases. The attractive interaction between the particles
increases as the potential depth increases. This inter-
action reduces the inter-particle spacing, and hence in-
creases the critical temperature and condensate fraction.

Fig. 5. The condensate fraction as a function of tem-
perature T at a2 = 10.0 K, r2 = 5.0 Å, d = −0.01a2,
for di�erent values of r1.

Fig. 6. The condensate fraction as a function of tem-
perature T at a2 = 10.0 K, r1 = 3.0 Å, d = −0.01a2,
for di�erent values of r2.

The e�ect of the equilibrium position on the conden-
sate fraction was examined. Figure 5 shows the results for
the condensate fraction as a function of temperature. As
r1 increases, both the critical temperature and the con-
densate fraction decrease. This result is in accordance
with that for the potential strength of the repulsive part.
In general we found that not only the strength of the re-
pulsive part a�ect the condensate fraction, but also, the



708 M.K. Al-Sugheir et al.

range of this part plays a major role on the condensate
fraction and the critical temperature.
To explore the role of each term in the potential, the

e�ect of the range of the attractive part r2 is also stud-
ied. From Fig. 6 we observed that as the range of the
attractive part of the potential increases the critical tem-
perature and the condensate fraction increase. The in-
crease in the attractive part range means that the parti-
cles of the system become closer to each other, and the
inter-particle spacing becomes small. This would increase
the probability of overlapping between the thermal wave-
lengths of each particle.

4. Conclusions

In this work, a model potential was used to describe a
neutral many-bosonic system. The static �uctuation ap-
proximation was applied to calculate the condensate frac-
tion and critical temperature. The role of the strength
and range of the repulsive part of the potential as well as
the e�ect of the depth and range of the attractive part
of the potential on these quantities were investigated.
We may summarize the above results by saying that

the increase in the strength or range of the repulsive
part of the potential decreases the critical temperature
and condensate fraction. In contrast, the increase in the
depth or range of the attractive part increases the critical
temperature and the condensate fraction.
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