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Assuming that V (x) ≈ (1 − µ) G1(x) + µL1(x) is a very good approximation of the Voigt function, in this
work we analytically �nd µ from mathematical properties of V (x). G1(x) and L1(x) represent a Gaussian and
a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the
distance from the function center. µ is obtained as a function of a, a being the ratio of the Lorentz width to the
Gaussian width. We �nd that, the Voigt function calculated with the expression we have obtained for µ, deviates
from the exact value less than 0.5% with respect to the peak value.

PACS: 32.70.−n, 32.70.Jz

1. Introduction

As it is well known, the convolution of a Gaussian and
a Lorentzian function is a Voigt pro�le. Calling γG and
γL the HWHM of the Gaussian and the Lorentzian pro-
�le, respectively, these functions normalized to unity are
expressed as

G(x) =
1√
πwG

exp
(
−(x/wG)

2
)

with wG = γG/
√
ln 2, (1)

L(x) =
1

πwL

w2
L

(x2 + w2
L)

with wL = γL, (2)

and

Va(x) ≡ V (a, x) =
a

π3/2

∫ ∞

−∞

e−(x′/wG)2

(x− x′)2 + w2
L

dx′ (3)

with a = wL/wG.
There are very powerful programs, written, both, in

compiled languages (i.e.: Fortran or C) and in C.A.S
(i.e.: Maple), that permit V (x) to be evaluated with
amazing precision. However, in many applications such
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a high precision is not much needed. In some cases, the
Voigt function is only an approximation in modeling the
line pro�le†. In other cases, it makes no sense to �t
a measured noisy pro�le with a theoretical one so pre-
cisely calculated. Also, for the calculation of the optical
thickness, a lower precision can be accepted. In all these
cases, V (a, x) can be written in a very good approximate
form as

Va(x) ≈ (1− µ)G1(x) + µL1(x), (4)

G1(x) and L1(x) being a Gaussian and a Lorentzian func-
tions with the same height and width at half-maximum
as V (x), and 0 ≤ µ ≤ 1. G1(x) and L1(x) are, therefore,
totally di�erent from those that would generate V (x) ex-
cept when µ = 0 and when µ = 1, being in these cases
V (x) = G1(x) = G(x) and V (x) = L1(x) = L(x), re-
spectively.

The Voigt function expressed as a weighted sum of
a Lorentzian and a Gaussian functions, as the expres-
sion (4) is, has been proposed by Kielkopf [1] and ana-

† For example, in the case of dense and cold plasmas, the spec-

tral pro�le is a Voigt one only when the ionic contribution is

neglected.
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lyzed by Liu et al. [2], among other authors. Since V (x)
is between G1(x) and L1(x) for all values of x except
for x = 0 and x = ±γV, where the three functions are
coincident, this choice is fully justi�ed.
The above cited authors, based on purely numerical

considerations, have found mathematical expressions for
the µ parameter by �tting the approximated calculation
to exact values from numerical integration of the expres-
sion (3). They claim a 0.6% agreement between V as
calculated with Eq. (4) and V calculated by the corre-
sponding convolution.
The purpose of this work is to deduce, from mathe-

matical properties of V (x), an analytical expression for
µ so that the sum given by Eq. (4) makes sense.
We organize this paper as follows: in Sect. 2 we do

some general considerations that justify the way we han-
dle the problem. In Sect. 3 we pose the theoretical math-
ematical expressions that allow us to �nd the analytical
expression for µ we are looking for. In Sect. 4 we illus-
trate our results and discuss about the accuracy of our
calculations.

2. Some previous general considerations

We may intend to calculate µ from Eq. (4) as

µ(a, x) =
V (a, x)−G1(x)

L1(x)−G1(x)
. (5)

Immediately, several di�culties would become evident.
First of all, µ(a, x) depends, not only on a, but also on x.
Secondly, expression (5) cannot be calculated at x = 0
nor x = ±γV. At these values of x, the numerator and
denominator of (5) are zero (we will discuss this point in
a second paper of this series). Finally, Eq. (5) cannot be
written in a simple analytical form, even by using series
expansions (and/or asymptotic development) of the three
functions, since it also depends on the a value.
However, in the second paper of this series, we will see

that an analytical expression, easily programmable, that
excellently �ts the exact values far from the peak pro�les,
can be achieved.
In this paper we do not calculate µ(a, x) from Eq. (5).

Instead of that, we use analytical properties of V (x) in or-
der to obtain µ(a), as we explain in the following sections.

3. µ analytical deduction using the property

of the normalized area

In this section, and according to which is stated in �1,
we build �rst of allG1(x) and L1(x) with the same height,
V (a, 0), and HWHM, γV, as V (x), so that they verify
Eq. (4).
In order to �nd V (a, 0) and γV we use, on the one

hand, the well known expression

Va(0) ≡ V (a, 0) =
ea

2

Φc(a)√
πwG

, (6)

where Φc(a) = 1− erf(a).
On the other hand, we consider the relation between

γV and wG which is exactly given by

γV = γV(a) = wGb1/2(a),

being

b1/2(a) = a+
√
ln 2 exp

(
− 0.6055a+ 0.0718a2

− 0.0049a3 + 0.000136a4
)
,

as can be found in [3]. From the properties of b1/2(a):

b1/2(0) =
√

ln(2), lim
a→∞

b1/2(a) = a,

the limit values of γV

γV(0) = γG, lim
a→∞

γV(a) = γL

can be found.
Therefore, using wG = γV/b1/2(a), we write Eq. (6) as

Va(0) =
b1/2(a)e

a2

Φc(a)√
πγV

, (7)

always with the area normalized to unity∫ ∞

−∞
V (x)dx = 1. (8)

In order toG1(x) and L1(x)meet the above conditions,
it must be

G1(x) =
b1/2(a)e

a2

Φc(a) exp
(
− ln(2)(x/γV)

2
)

√
πγV

(9)

and

L1(x) =
b1/2(a)e

a2

Φc(a)γV√
π(x2 + γ2

V)
. (10)

G1(x) and L1(x) are not normalized to unity, but

AG ≡
∫ ∞

−∞
G1(x)dx =

b1/2(a)e
a2

Φc(a)√
ln(2)

, (11)

and

AL ≡
∫ ∞

−∞
L1(x)dx =

√
πb1/2(a)e

a2

Φc(a). (12)

By integrating both members of Eq. (4), and taking
into account Eqs. (8), (11), and (12), it holds that

(1− µ)AG + µAL = (1− µ)
b1/2(a)e

a2

Φc(a)√
ln(2)

+µ
√
πb1/2(a)e

a2

Φc(a) = 1, (13)

and therefore

µa =
b1/2(a)e

a2

Φc(a)−
√
ln(2)

b1/2(a)ea
2Φc(a)

(
1−

√
π ln(2)

) , (14)

where µ depends only on a. Taking into account Eq. (7),
expression (14) can be written as

µa =
π1/2Va(0)γV −

√
ln(2)

π1/2Va(0)γV

(
1−

√
π ln(2)

) , (15)

where both, Va(0) as γV, can be determined from the
experimental data. Therefore, in this case

V (µa, x) ≈ (1− µa)G1(x) + µaL1(x). (16)

4. Results and discussion

In order to illustrate the expression (4), a Gaussian,
a Lorentzian, and a Voigt pro�les, all of them with an
intensity normalized to V (0) and with the same value of
HWHM, are shown in Fig. 1.
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Fig. 1. A Gaussian, a Lorentzian, and a Voigt pro�les,
all of them with an intensity normalized to V (0) and
with the same value of HWHM.

Figure 2 shows µ(a) as a function of a, according
to Eq. (14), ranging from 0 to 1, as expected. The
same function obtained empirically by Kielkopf [1] is also
shown for comparison. As can be seen in the drawing
scale, our results are almost indistinguishable from those
obtained by Kielkopf [1]. Therefore, a priori, the same
quality of adjustment is expected. The advantage of our
results rests on that they were obtained on theoretical
bases, whereas Kielkopf [1] has reached his results apply-
ing numerical arguments.

Fig. 2. µ as a function of a. µ(a) as it is obtained with
Eq. (14) and µ(a) obtained empirically by Kielkopf.

We can test the quality of our �t by normalizing the
deviation of V (µa, x) from the exact value
a) to the peak value, Va(0)

∆1 =
Va(x)− V (µa, x)

Va(0)
or

b) to the value at x, Va(x)

∆2 =
Va(x)− V (µa, x)

Va(x)
.

It is important to point out that both, Kielkopf [1] and
Liu et al. [2], have applied the criterion (a) to test their
�t. They, as well us, have obtained ∆1 ≤ 1%. Using
criterion (b), higher relative deviations are obtained.
Figures 3 and 4 display, as a function on x, ∆1 and ∆2,

respectively. Both �gures have been obtained assuming
a = 1; for other a values the behavior is completely sim-
ilar. As it is shown in these �gures, our calculations as
well as the Kielkopf [1] and Liu et al. [2] calculations, give,
all of them, good and comparable �tting for |x| ≈ 4−5.
But, our �tting and Kielkopf [1] �tting are both better
than that of Liu et al. [2] for |x| values higher than ≈ 5,
as it is clear from Fig. 4. Our adjustment is usually bet-
ter than Kielkopf's [1] for |x| values lower than ≈ 5, as
it is seen in the �gures. A correction factor introduced
by Kielkopf [1] for |x| & 5 allows the author to get bet-
ter results than ours in that range (we will do something
similar in the second paper of this series).

Fig. 3. ∆1 as a function of x (see text).

Fig. 4. ∆2 as a function of x (see text).

Depending on the speci�c physical parameter we are
interested on, criterium (a) or (b) will be suitable to test
the goodness of our �t. Usually, criterium (a) is the right
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choice if the optical thickness is calculated. To calculate
other parameters instead, the parameter a for example,
criterium (a) is not su�cient and criterium (b) has to be
adopted. Indeed, Di Rocco et al. [3] have shown that, to
reduce the di�culties caused by experimental noise, it is
appropriate to normalize the area under the curve to the
unit and consider the product

Va(0)γV =
b1/2(a)e

a2

Φc(a)√
π

with Gaussian and Lorentzian limits 0.4697 and 0.3183,
respectively.
In this paper, we do not intend to give a method to cal-

culate V (x) with a comparable accuracy to the numerical
methods. This work gives, instead, an analytical base to
the empirical approximations used by Kielkopf [1] and by
Liu et al. [2], giving also an idea of their capabilities and
limitations.
In order to show that the formula we have proposed

is suitable for practical applications, we present an ex-
ample. For a Voigt pro�le obtained assuming wG = 1
and a = 1, Eq. (15) gives us µ = 0.6525. However, in
�tting such a pro�le with the expression (4) (with a cor-
relation coe�cient R2 = 0.99993), we obtain µ = 0.737,
which implies a ≈ 1.29. Then, the relative error in a, is
∆a ≈ 29%. Since the error in calculating the quotient
WG/WL veri�es ∆(WG/WL) = ∆WG +∆WL, assuming
that errors in calculating wG and wL are not very dif-
ferent from each other, the relative errors in calculating

each of them are therefore about 15%. This enables us
to say that our approximation correctly recovers the pa-
rameters of the Voigt function.

In short, raising our approximation in the form (4),
based on the observation that the Voigt distribution is
intermediate between the Gaussian and the Lorentzian
distributions, and using the property of the normalization
of the areas, we obtain a mathematical expression for µ as
a function of a that deviates very little from that obtained
previously by other authors, with the advantage of being
theoretically justi�ed.
However, we do not forget that in general µ depends

not only on a but also on x. This will be addressed by
us in the next paper of this series.
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