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The Schrödinger equation under the Manning�Rosen potential is solved in arbitrary dimension via the
quantum mechanical idea of supersymmetry. The Pekeris approximation is used to overcome the inconsistency
of the potential with the centrifugal term. Comments on the energy eigenvalue behavior versus dimen-
sion are included. The inter-dimensional degeneracy for various orbital quantum number l and dimensions D
are studied. The expectation values of some physical parameters are reported via the Feynman�Hellmann theorem.
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1. Introduction

The rather old nonrelativistic Schrödinger equation ap-
pears as an either pedagogical or research background.
Despite the long history of the �eld, there is still con-
tinuing interest in �nding the corresponding solutions
and exploring related consequences in physical sciences.
Apart from the numerical programming, there are many
exact and approximate analytical techniques including
the Nikiforov�Uvarov (NU) [1, 2], supersymmetry quan-
tum mechanics (SUSYQM) [3, 4], point canonical trans-
formation (PCT) [3, 4], Lie algebraic [5], asymptotic it-
eration [6], shifted 1/N expansion [7], exact quantization
rule [8], the Hartree method [9], perturbation theory [10]
and the ansatz approaches [11�13].
Our purpose of study is to solve the Schrödinger equa-

tion under the Manning�Rosen potential (MRP) which
is a central interaction [14]. The central potentials are
present in all branches of physics. In particle and high-
-energy physics, they describe the quark interactions [15].
In nuclear physics, they yield outstanding results in spec-
troscopy [16]. In atomic physics, they well describe the
binding energy and inclusive momentum distributions
[17, 18]. In molecular physics, they have been used to
investigate the intramolecular and intermolecular inter-
actions and atomic pair correlation functions [18, 19].
Our focus in the present study is the Manning�Rosen
potential [20], which yields outstanding phenomenologi-
cal results. In particular, it has been applied to study
the vibration modes diatomic molecules [21�23]. On the
other hand, this interaction is the more general case of the
sound Hulthén potential which itself yields motivating re-
sults in various �elds such as nuclear and particle [24],
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atomic [25], molecular [26] and chemical physics [27].
The MRP has been already studied under the Dirac [28],
Klein�Gordon [29] and Schrodinger equation [30] by var-
ious analytical tools. Here, bearing in mind the deeper
physical insight that analytical methodologies provide
into the physics of the problem, we use the powerful
SUSYQM in our calculations. For the sake of generality,
we do our study in the D-dimensions. To be able to use
the SUSYQM, we �rst apply a Pekeris-type approxima-
tion [31, 32] to the centrifugal term. Having calculated
the approximate analytical solutions, we calculate some
useful expectation values which are frequently present in
various physical researches.

2. The D-dimensional radial

Schrödinger equation

This potential possesses the form [20]:

V (r) =
V1

(eαr − 1)2
+

V2

eαr − 1
, (1)

with

V1 =
~2α2[α′(α′ − 1)]

2µ
, (2a)

V2 = −~2bα2

2µ
, (2b)

where b and α′ are two constants and the parameter α
characterizes the rang of the potential.
In Fig. 1 we have plotted the potential versus r. In the

D-dimensional Hilbert space, the radial wave function
Rn,l(r) is [5]:[

d2

dr2
+

D − 1

r

d

dr
+

2µ

~2
(
ED

n,l − V (r)
)

− l(l +D − 2)

r2

]
Rn,l(r) = 0, 0 ≤ r ≤ ∞, (3)

(650)



Approximate Solutions of Schrödinger Equation . . . 651

Fig. 1. Manning�Rosen potential vs. r.

Fig. 2. The potential and its approximation.

where l is the angular momentum quantum number. To
get rid of the �rst order derivative, we apply [5]:

Un,l(r) = r
D−1

2 Rn,l(r), (4)

which results in
d2Un,l(r)

dr2
+

2µ

~2

[
ED

n,l −
V1

(eαr − 1)2
− V2

eαr − 1

− ~2(D + 2l − 1)(D + 2l − 3)

8µr2

]
Un,l(r) = 0. (5)

According to the Pekeris approximation, we shall replace
inverse square term by [31, 32]

1

r2
∼ α2

(
D0 +

D1

eαr − 1
+

D2

(eαr − 1)2

)
, (6)

where D0 = 1/12, D1 = 1 and D2 = 1. In Fig. 2 we have
plotted both sides of relation (6) to reveal the reason-
ability of the approximation. Substituting Eq. (6) into
Eq. (5), we obtain

d2Un,l(r)

dr2
+

η2
eαr − 1

Un,l(r) +
−η1

(eαr − 1)2
Un,l(r)

=

[
−2µ

~2
ED

n,l +
(D + 2l − 1)(D + 2l − 3)

4
α2D0

]
×Un,l(r), (7a)

where

η1 =
2µ

~2
V1 +

(D + 2l − 1)(D + 2l − 3)

4
α2D2,

η2 = −2µ

~2
V2 −

(D + 2l − 1)(D + 2l − 3)

4
α2D1. (7b)

For further purposes, we write Eq. (7a) as[
− d2

dr2
+ Veff,n,l(r)

]
Un,l(r) = λn,lUn,l(r) (8)

with

Veff(r) =
η1

(eαr − 1)2
− η2

eαr − 1
, (9a)

λn,l =
2µ

~2
ED

n,l −
(D + 2l − 1)(D + 2l − 3)

4
α2D0. (9b)

The latter is apparently a Schrödinger-like equation.
Based on SUSYQM, the superpotential must be the �rst
ingredient we search for. Our superpotential is [30]:

W (r) =
−A

eαr − 1
+B, (10)

where

A =
α+

√
α2 + 4η1
2

, (11a)

B =
(−A2 + η1 + η2)

2A
, (11b)

λ0,l = −B2, (11c)

and A,B > 0. On the other hand, the Hamiltonian of
Eq. (7) is constructed from the superpotential via [3, 4]:

V±(r) = W 2(r)±W ′(r). (12)

The ground state wave function U0,l(r) is simply calcu-
lated from [3, 4]

U0,l(r) = N0,l exp

(
−
∫

W (r)dr

)
. (13)

If the shape invariance condition holds, i.e. [3, 4]:

V+(a0, r) = V−(a1, r) +R(a1), (14)

where a1 is a new set of parameters uniquely determined
from the old set a0 via the mapping F : a0 7→ a1 = F (a0)
and the residual term R(a1) dose not include the vari-
able r, we simply have [3, 4]:

Hs = − ∂2

∂x2
+ V−(as, x) + Es, (15a)

Hsϕ
−
n−s(as, x) = Enϕ

−
n−s(as, x), n ≥ s, (15b)

ϕ−
n−s(as, x) =

A†

[En − Es]
1/2

ϕ−
n−(s+1)(as+1, x), (15c)

A†
s = − ∂

∂x
+ Φ(as, x), (15d)

En =
n∑

k=1

R(ak). (15e)

In our case, the partner potentials are

V+(r) =
A(A+ α)eαr

(eαr − 1)2
− η1 + η2

eαr − 1

+

(
−A2 + η1 + η2

2A

)2

(16)

and
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Fig. 3. Energy vs. D for n = 1, 2 and various l's. For
µ = 1, ~ = 1, α = 0.5, α′ = 1.2, b = 0.2.

Fig. 4. Energy vs. V1.

V−(r) =
A(A− α)eαr

(eαr − 1)2
− η1 + η2

eαr − 1

+

(
−A2 + η1 + η2

2A

)2

. (17)

As we see, the partner Hamiltonians are shape invariant
via a mapping of the form A → A+α. The energy eigen-
values of Hamiltonian

H−(r) = − d2

dr2
+ V−(r) (18)

are given by

λ
(−)
0,l = 0, (19a)

λ
(−)
n,l =

n∑
k=1

R(ak) =

(
−A2 + η1 + η2

2A

)2

−
[
−(A+ nα)2 + η1 + η2

2(A+ nα)

]2
. (19b)

So the complete energy spectrum is given by

λn,l = λ
(−)
n,l + λ0,l = −

[
−(A+ nα)2 + η1 + η2

2(A+ nα)

]2
. (20)

Comparing Eq. (20) with Eq. (9b), we obtain the spec-
trum as

ED
n,l =

~2

2µ

{
(D + 2l − 1)(D + 2l − 3)

4
α2D0

Fig. 5. Energy vs. V2.

Fig. 6. Energy vs. α.

−
[
−(A+ nα)2 + η1 + η2

2(A+ nα)

]2}
. (21)

Figure 3 represents the energy behavior for n = 1, 2
and 3. In addition, to provide a better insight about the
role of the parameters engaged, we have plotted energy
vs. V1, V2 and α in Figs. 4�6.

3. Some expectation values

for the Manning�Rosen potential

in D-dimensions

We now calculate some expectation values of the
Manning�Rosen potential using the Hellmann�Feynman
theorem (HFT) [33�35]. Suppose the Hamiltonian H for
a particular quantum system is a function of some param-
eters q, and let En,l(q) and Un,l(q) be the eigenvalues and
eigenfunctions of H, respectively. According to the HFT
theorem,

∂En,l(q)

∂q
= ⟨Un,l(q)|

∂H(q)

∂q
|Un,l(q)⟩, (22)

bearing in mind that our e�ective Hamiltonian was

H = − ~2

2µ

d2

dr2
+

~2

2µ

(D + 2l − 1)(D + 2l − 3)

4r2

+
V1

(eαr − 1)2
+

V2

eαr − 1
. (23)

In order to calculate ⟨(eαr − 1)−2⟩, we set q = V1 such
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Fig. 7. ⟨(eαr−1)−1⟩ vs. D for n = 1 and 2. For µ = 1,
~ = 1, α = 0.5, α′ = 1.2, b = 0.2.

Fig. 8. ⟨(eαr−1)−2⟩ vs. D for n = 1 and 2. For µ = 1,
~ = 1, α = 0.5, α′ = 1.2, b = 0.2.

that [35]:

∂En,l

∂V1
= ⟨Un,l(V1)|

∂H(V1)

∂V1
|Un,l(V1)⟩

=
⟨
(eαr − 1)−2

⟩
. (24)

In order to calculate ⟨(eαr − 1)−1⟩, we set q = V2 such
that

Fig. 9. ⟨r−2⟩ vs. D for n = 3. For µ = 1, ~ = 1,
α = 0.5, α′ = 1.2, b = 0.2.

∂En,l

∂V2
= ⟨Un,l(V2)|

∂H(V2)

∂V2
|Un,l(V2)⟩

=
⟨
(eαr − 1)−1

⟩
. (25)

In Figs. 7�9 we have plotted ⟨(eαr−1)−1⟩, ⟨(eαr−1)−2⟩
and ⟨r−2⟩ versus D for U1,0, U2,0 and U2,1.

4. Conclusion

We obtained solutions of the D-dimensional
Schrödinger equation with the Manning�Rosen po-
tential within the framework SUSQM after applying an
approximation to the centrifugal term. We calculated
the most useful expectation values of the system using
the Hellmann�Feynman theorem which reveal the role
of engaged terms. Instead of focusing on a particular
system, which requires an extensive phenomenological
survey (also due to the lack of su�cient experimental
data) we included various �gures which indicate the role
of various terms in the spectrum of the system. We see
that the energy is symmetric with respect to D = 2 for
D = 1 and D = 3. While the energy magnitude shows
an increasing behavior for increasing V2, it is decreasing
for increasing V1. In addition, we observe the detailed
behavior of energy in Fig. 6. Our results can be directly
used to various systems after proper �ts done.
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