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Phase Diagram of Metal�Insulator Transition
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The model of a strongly correlated system in which periodically spaced Anderson�Hubbard centers are
introduced into narrow-band metal is considered. Besides the interactions between localized magnetic moments
and strong on-site Coulomb interaction, the model takes into account the hybridization of localized and band
states. To study the e�ect of the lattice deformation on the electrical properties of the system, the phonon term
and elastic energy have been taken into account. Green functions for band and localized electrons have been
found. On this base, the energy spectrum has been investigated as a function of model parameters, temperature
and external pressure. The criterion of the metal�insulator transition for an integer value of electron concentration
has been derived and the phase diagram of the metal�insulator transition has been built.
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1. Introduction

In recent decades, the progress of technology is con-
nected with the synthesis of new materials with unique
electric and magnetic properties. Materials with the
Anderson�Hubbard centers implemented in a matrix of
a narrow-band conductor are amongst the most perspec-
tive ones. The �rst attempt to build a theoretical de-
scription of such impurity center has been done in the
pioneering paper [1]. In papers [2, 3] a generalization
of single impurity Anderson model [1] for the case of a
system of periodically spaced Anderson�Hubbard centers
has been proposed. In this periodic Anderson model, in
the limit of strong intra-site interaction between local-
ized magnetic moments, the indirect exchange through
the band electron subsystem occurs.
In papers [4, 5] the single impurity and double impu-

rity Anderson models have been used to study the elec-
tric conductance of the systems with quantum dots and
the magnetic ordering in a band electron subsystem was
found crucially important for the spin-dependent trans-
port through a quantum dot. In this paper, an e�ec-
tive Hamiltonian taking into account basic interactions
in the localized electron subsystem as well as hybridiza-
tion between the localized and band electrons is used to
study the electrical properties of the Anderson�Hubbard
material.

2. The model Hamiltonian

We start from the model of the Anderson�Hubbard
material, which generalizes the models [2, 6], and take
into account the peculiarities of correlation e�ects in nar-
row energy bands. The Hamiltonian contains terms de-
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scribing localized (d) subsystem and band (s) subsystem
as well as their hybridization

H =
∑
kσ

(εk − µ)c+kσckσ + (Ed − µ)
∑
iσ

d+iσdiσ

+
∑
ijσ

tij(n)d
+
iσdjσ +

∑
ijσ

[
T (ij)d+iσdjσnσ̄ +H.c.

]
+U

∑
i

ni↑ni↓ +
1

2

∑
ijσσ′

J(ij)d+iσd
+
jσ′diσ′djσ

+
∑
ikσ

[
V (ik)d+iσckσ +H.c.

]
+
∑
ijk
i ̸=j

[
V (ijk,k)d+iσd

+
jσ̄c−kσ̄ckσ +H.c.

]
, (1)

where εk denotes the energy of band electron with wave
vector k; V (ik) and V (ijk,−k) are matrix elements de-
scribing single-electron and two-electron hybridization of
band and localized states; d+iσ, diσ are creation and an-
nihilation operators for spin σ electron on i-th center in
localized (d) state; c+kσ, ckσ are operators of band elec-
tron creation and annihilation. The hopping of electrons
in the d-subsystem is strongly in�uenced by correlated
hopping (we take into account two possible mechanisms
of correlated hopping which, e�ectively, cause the energy
subbands narrowing). The model Hamiltonian takes into
account basic processes and interactions in a narrow non-
-degenerate band, namely electron hoppings (the third
and fourth sums in (1)), intra-site Coulomb repulsion
(the �fth sum) and interatomic exchange (the sixth sum).
The terms �localized� and �band� used here can have dif-
ferent sense depending on the peculiarities of the material
under consideration. If a transition metal is studied, then
the localized subsystem are 3d-electrons and the band
subsystem is formed by s-p-electrons. For the case of
narrow band oxides, 3d-electrons form the localized sub-
system and band states correspond to both 3d-electrons
of transition metal and 2p of the oxygen subsystem, in
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rare earth compounds one has localized f -electrons and
band s-p-d-electrons.

3. Metal�insulator transition

Let us consider a partial case of the model

H = −µ
∑
iσ

(
c+iσciσ + d+iσdiσ

)
+ Ed

∑
iσ

d+iσdiσ

+Eb(u)
∑
iσ

c+iσciσ + U
∑
i

ni↑ni↓ +Hs +Hsd

+
∑
qf

~ωf (q)b
+
qfbqf +

1

2
NV0Cū2, (2)

Hs =
∑
ijσ

tij(u)c
+
iσciσ, (3)

Hsd = V (u)
∑
iσ

(
c+iσdiσ + d+iσcjσ

)
, (4)

with the hybridization of band and localized states and
take into consideration the e�ect of lattice strain u on
the electronic subsystem, where tij(u) = tij

(
1 + BV0

2w u
)
,

V (u) = V − gu, 2w represents the unperturbed energy
band width, bqf operators describe phonon subsystem
and values of parameters g, B, V0, C depend on the
narrow-band compound [7].
We use the Green function method for the calculation

and write the equation for localised electron and band
electron Green functions as⟨⟨

cp↑|c+p′↑

⟩⟩
[E + µ− Eb(u)] =

δpp′

2π

+
⟨⟨

[cp↑;Hs]|c+p′↑

⟩⟩
+
⟨⟨

[cp↑;Hsd]|c+p′↑

⟩⟩
, (5)⟨⟨

dp↑|d+p′↑

⟩⟩
(E + µ− Ed)− U

⟨⟨
np↓dp↑|d+p′↑

⟩⟩
=

δpp′

2π
+

⟨⟨
[dp↑;Hsd]|d+p′↑

⟩⟩
. (6)

To break o� the chain of equation we apply a projection
procedure [8]:

[cp↑;Hsd] =
∑
i

εpjdj↑; (7)

[dp↑;Hsd] =
∑
j

ξpjcj↑, (8)

⟨⟨
np↓dp↑|d+p′↑

⟩⟩
∼= ⟨np↓⟩

⟨⟨
dp↑|d+p′↑

⟩⟩
(9)

and analogous decouplings in the equations for functions
⟨⟨cp↑|d+p′↑⟩⟩ and ⟨⟨dp↑|c+p′↑⟩⟩. Solving the equations with
respect to band and localised electrons Green functions
we obtain the energy spectrum

E1,2 = −µ+
Ed + Eb(u)

2
+

U⟨np↓⟩
2

+
tk(u)

2

∓ 1

2

√
(Ed − Eb(u) + U⟨np↓⟩ − tk(u))2 + 4(V (u))2

for localized electrons and a standard band spectrum for
itinerant ones.
In the metal�insulator transition point the spectrum

contains a separate d-level with energy

E1 = −µ+ Ed + U⟨np↓⟩ (10)

and a band with dissipation relation

E2 = −µ+ Eb(u) + tk(u). (11)

The criterion for the metal insulator transition is ob-
tained as

Eb(u)− Ed − U⟨np↓⟩ = w(u).

Both the bandwidth and band center position can be
changed by the external pressure application. The equi-
librium value of the lattice strain can be found from the
minimum condition for the Gibbs function

G = F + PV = F +NPV0(1 + ū),

as

ū = −
( S

N

∑
kσ

⟨
c+kσckσ

⟩
+

BV0

2w

1

N

∑
kσ

tk
⟨
c+kσckσ

⟩
−PV0

CV0

)/
V0C. (12)

To calculate ⟨c+kσckσ⟩, determined by the spectral func-
tion of band electrons, we must �nd the chemical poten-
tial from the condition

1

N

∑
i

(⟨
d+kσdkσ

⟩
+
⟨
c+iσciσ

⟩)
= ⟨n⟩. (13)

For the transition to be initiated the equilibrium value of
lattice strain is to be

ū = −(W − wc)/(S − 0.5BV0) < 0. (14)

After numerical calculation with model rectangular den-
sity of states at non-zero temperature we have

ū =
1

CV0

(
S

aw
ln

∣∣∣∣ e−b−a∆ + 1

e−b+a∆ + 1

∣∣∣∣
− BV0

2w2

∫ w

−w

εdε

eb+aε + 1
− pV0

)
, (15)

here a = 1
θ

(
1 + BV0

2w ū
)
and b = 1

θ [−µ+ Eb(ū)].

Fig. 1. The energy gap width as a function of temper-
ature. Curves (from up to down) correspond to values
pV0/w = 2.00, 2.05, 2.10, 2.105.
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Fig. 2. The pressure�temperature phase diagram of
metal�insulator transition in the model.

Following the paper [7], we take parameter values
1/CV0 = 0.05 eV−1; BV0 = −3 eV, S = 0.4 eV;
W = 2.2 eV; w = 2 eV; U = 5 eV and obtain the tem-
perature dependence shown in Fig. 1 and the pressure-
-temperature phase diagram shown in Fig. 2.

4. Conclusions

In the simpli�ed model of narrow band compound with
the Anderson�Hubbard centers a stabilization of the low
temperature insulator phase can be described if the ef-
fect of a lattice strain is incorporated into the model
Hamiltonian. The electron localization is of the Mott�
Hubbard nature, in particular, the upper and lower Hub-
bard subbands can be observed in the energy spectrum

far from the transition point [9]. No matter how weak,
the hybridization of band and localized states provide
a su�cient mechanism for localization e�ects to dom-
inate in wide temperature�pressure ranges. Insulator
or correlated metal phases in the phase diagram and
the Coulomb repulsion-to-bandwidth or localized level
energy-to-bandwidth ratios, where both the bandwidth
and the localized levels position can be substantially
changed by the external pressure or chemical substitu-
tion, can in principle be estimated from the experimental
data on the basis of the considered model.
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