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Considering high pressure torsion experiments as a motivation, plastic behavior of crystalline solids is treated
as a highly viscous material �ow through an adjustable crystal lattice. Instead of the traditional decomposition
rule considering the deformation gradient as a product of the elastic and plastic parts, the proposed model is
based on its rate form: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity
gradients corresponding to the slip rates of individual slip systems; the slip strains themselves are not de�ned in
the model. The geometrical changes caused by material �ow and the slip strains can be speci�ed a posteriori.
Crystal lattice distortions are measured with respect to a lattice reference con�guration. In an adopted rigid
plastic approximation the lattice distortions are reduced to rotations. Constitutive equations incorporate non-local
hardening caused by close range interactions among dislocations.

PACS: 62.20.F−, 81.40.Lm, 83.50.−v

1. Introduction

After an initial adjustment to a tool, specimens twisted
under high axial compression do not change their shape
and withstand unlimited amount of plastic deformation.
The initial non-steady material �ow (up to strain≈ 20 re-
ported in [1�3]) is followed by a steady �ow where no fur-
ther work hardening and structural changes are observed.
Looking at other severe plastic deformation experiments
[4, 5] it seems that crystalline materials at yield behave
as a special kind of incompressible, anisotropic, highly
viscous �uids. The material �ow through the crystal lat-
tice has been regarded by Asaro [6] as crystal plasticity
�basic tenet�. The microscopic inspection reveals a struc-
tural adjustment of the crystal lattice to the material �ow
seen as a deformation substructure. High viscosity pro-
vides a possibility to describe the �ow as a quasi-static
process, where inertial forces can be neglected. The �ow
through the lattice is restricted to preferred crystallo-
graphic planes and directions causing anisotropy. In the
deformation process the lattice is strained and rotated.
Changes in the distances among lattice positions mea-
sured by the lattice strain are relatively small, therefore,
in the outlined model the material is considered as rigid-
-plastic, the lattice can be adjusted to the �ow by local
reorientations.

2. Flow model

Kinematics of the model is characterized by the veloc-
ity �eld v(x, t), the slip rates ν(i)(x, t), i = 1, 2, . . . , I,
and the lattice rotation R(x, t); x is a position in the
current con�guration and t means time. v and ν(i) de-
scribe the material �ow in the current con�guration, and
R controls the orientation of the lattice in the current
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con�guration with respect to the lattice reference con-
�guration. Instead of the traditional decomposition rule
F = F eF p considering the deformation gradient F as
a product of the elastic F e and plastic F p parts∗, the
proposed model is based on the rate form of this rule
(a superposed dot means a material time derivative)

L = ∇v = ṘRT +
I∑

i=1

ν(i)s(i) ⊗m(i), (1)

where the velocity gradient L = ∇v has two parts: the
lattice spin ΩL = ṘRT which measures the adjustment
rate of the lattice, and the rate of material �ow con-
sisting of contributions of the individual slip rates ν(i),
i = 1, . . . , I. The vectors s(i)(x, t) and m(i)(x, t) in the
current con�guration are the slip directions and the unit
normals to the slip planes, respectively. The vectors s(i)

and m(i) rotate rigidly with the lattice, s(i) = Rs
(i)
0 ,

m(i) = Rm
(i)
0 , where s(i)0 ,m

(i)
0 are the unit vectors �xed

in the lattice reference con�guration, they are determined
by the crystallographic structure of the material.
The symmetric part of (1) yields the quasistatic �ow

equations represented by the stretching D,
D =

(
∇v +∇vT

)
/2

=
I∑

i=1

ν(i)(s(i) ⊗m(i) +m(i) ⊗ s(i))/2. (2)

The antisymmetric part of (1) provides the evolution

∗ The gradient F and slips γ(i) are not de�ned in the model. If

needed, they may be recovered a posteriori. For a chosen refer-

ence con�guration F can be revealed by time integration of the

velocity gradient �eld, Ḟ F−1 = L. Similarly, the slip strains

carried by individual slip systems could be obtained from the

corresponding slip rates ν(i) by a posteriori time integration.
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equations for R representing adjustment of the lattice

Ṙ =
[
(∇v −∇vT)/2

−
I∑

i=1

ν(i)(s(i) ⊗m(i) −m(i) ⊗ s(i))/2
]
R. (3)

Generally, R does not correspond to a gradient of a
vector �eld, i.e. R may be incompatible. As seen by
an observer in the current con�guration a measure of
incompatibility is the density tensor Λ of excess disloca-
tions (called usually geometrical necessary dislocations
(GNDs)), (cf. [7] eq. (6.6))

Λ =
[
curlRT

]
RT. (4)

In the present model the GND density tensor Λ repre-
sents the result of the fragmentation process modeling
misoriented deformation substructures seen in electron
micrographs.
Dynamics of the deformation process is governed by

the Cauchy stress T (x, t) and critical resolved shear
stresses τ

(i)
y (x, t). The stress has to satisfy quasistatic

stress equilibrium
divT = 0. (5)

The Cauchy stress T controls the slip rates ν(i) through
the resolved shear stresses τ (i)

τ (i) = s(i) · Tm(i). (6)

Constitutive equations. In the rigid-viscous-plastic ver-
sion of the �ow model the resolved shear stresses τ (i) are
assumed to be coupled with the slip rates ν(i) through a
power law constitutive equation

ν(i) =

∣∣∣∣∣τ (i)τ
(i)
y

∣∣∣∣∣
1/r

sgnτ (i), (7)

where r > 0 is a scalar material parameter, which con-
trols the rate sensitivity; for r → 0 the constitutive re-
lation (7) represents a rate independent limit, i.e. the
material is idealized as rigid-plastic.

The critical resolved shear stresses τ (i)y > 0 represent-
ing dissipative internal forces that oppose slip are as-
sumed to be governed by the evolution equations

τ̇ (i)y =
I∑

j=1

Hij |ν(j)|+
I∑

j=1

Kij(s
(i) · ∇)(s(j) · ∇)ν(j),

(8)
where Hij is a local hardening matrix. In (8) the terms
(s(i) · ∇)(s(j) · ∇)ν(j) introduce non-local e�ects; Kij is
a non-local hardening matrix. The gradient terms model
short range interactions among dislocations. The at-
tempts to specify the local and non-local hardening ef-
fects, based on a statistical treatment of ensembles of
discrete dislocations [8�10], resulted in a whole spectrum
of gradients and revealed the complexity of the problem.
In [10] it is argued that the GND density tensor Λ is
insu�cient to describe the hardening process. The non-
-local interactions can be expressed as integral terms de-

pendent on close range correlations among dislocations.
However, speci�cation of the correlation functions and an
approximation of the integral terms by gradients remain
an open problem. Therefore, the gradient term in (8)
derived for parallel dislocation segments should be un-
derstood as a rough approximation.

3. Results and discussion

In summary: a �ow-adjustment boundary value prob-
lem involves the following system of equations: the quasi
static �ow Eqs. (2), the constitutive Eq. (7) incorpo-
rating (6) and the equilibrium Eq. (5) accompanied by
the evolution equations for R and τ

(i)
y given by (3)

and (8). The problem has to be supplemented by initial
and boundary conditions. The initial value of R(x, 0)
is either compatible, i.e. it corresponds to a gradient of
a vector �eld, or R(x, 0) is incompatible and the corre-
sponding Λ(x, 0) given by Eq. (4) represents the initial
distribution of GNDs. Typical boundary conditions of
high pressure torsion (HPT) experiments can be taken
as an example. HPT process seen in the direction per-
pendicular to the torsion axis is approximately viewed
as a plane-strain simple shear [11]. HPT sample can be
idealized as an in�nite slab of the height h. During de-
formation the bottom of the slab is �xed and the upper
surface is driven by velocity ρθ̇; ρ is the distance from
the torsion axis, and θ̇ the rate of torsion angle per unit
height of the specimen.
In a prospective incremental solution procedure for

�elds Rk and (τ
(i)
y )k known in the k-time step, the veloc-

ity �eld vk can be evaluated in principle from Eqs. (2),
(5)�(7). Then Eqs. (3) and (8) yield rates Ṙk and (τ̇

(i)
y )k.

The values Rk+1 and (τ
(i)
y )k+1 needed in the next time

step δtk+1 are expressed as Rk+1 = Rk + Ṙδtk+1 and
(τ

(i)
y )k + (τ̇

(i)
y )k+1δtk+1. Let us note that assuming the

constitutive equation of type (7) all slip systems become
activated.
The outlined approach is designed to model a defor-

mation substructure represented by the adjusted lattice.
The substructure formation can be modeled as an insta-
bility of the homogeneous �ow, e.g. [9]. However, sim-
ilarly as the standard crystal plasticity, the �ow model
without the gradient terms in (8) predicts singular phys-
ically non-realistic substructure features: singular sub-
structure orientation and zero size of their patterns. To
reach a better agreement with the observations the model
should be enriched by dislocation mechanisms which con-
trol the plastic �ow. At present there is no unique recipe
how to formulate an adequate model. In principle, in
crystalline materials a spectrum of the mechanisms may
be activated, however, for a particular instability mode
and loading conditions usually one of the mechanisms be-
comes dominant, e.g. the width of persistent slip bands
is controlled by an inner structure of the bands [12], the
close range dislocation interactions control the orienta-
tion and size of misoriented patterns [9]. As an example,
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the outlined model is enriched by the statistically mo-
tivated higher gradients of slip rates introduced in the
hardening Eq. (8). In Ref. [9] it has been shown that such
gradient terms lead to a �nite dislocation pattern size
and a more realistic substructure misorientation. The
line tension of dislocations introducing higher gradients
through the dislocation line curvature seems to be an-
other mechanism [13].
Nevertheless, in the outlined �ow model an important

ingredient is still missing. Besides the incorporated polar
dislocation substructure, i.e. GNDs, there exist dipolar
dislocation clusters not accompanied by the crystal lat-
tice misorientations. They consist mainly of dislocation
dipoles and loops (tangles, veins, walls), e.g. [12], which
serve as a storage of dislocations and places of their an-
nihilation and generation.

4. Conclusion

Using an allegory, a ductile material in a plastic regime
tries to build a highway system of misoriented regions
and lamellae of localized shear to minimize the energy
cost of the plastic tra�c. In the system the dipolar clus-
ters serve as service stations which provide fresh carriers
of plastic deformation and store or destroy out-of-service
carriers (the dipolar clusters provide often a subsidiary
service only, as polar boundaries can annihilate and gen-
erate glide dislocations as well). The art of metallurgy
is to hinder the plastic tra�c as much as possible and to
allow it only at higher applied stresses and temperatures,
but not to stop the tra�c entirely. Hindering the tra�c
raises material strength, but stopping it could result in a
dangerous brittleness.
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