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Hybrid molecules formed by coupling semiconductor quantum dots to metal nanoparticle nanoantennas
provide a new paradigm for directed nanoscale transfer of quantum information. To assess this possibility,
we study theoretically the response of these hybrid molecules to applied optical �elds. Quantum-coherent
time-evolution of the semiconductor quantum dots in the hybrid molecule is found by solving the semiconductor
quantum dot density matrix equations. We study hybrid molecules in the weak and strong coupling regimes. In
strongly driven, strongly dipole-coupled semiconductor quantum dot�metal nanoparticle hybrids with spherical
metal nanoparticles, interference, dispersion near resonance and self interaction de�ne the metal nanoparticle/
semiconductor quantum dot coupling and lead to the Fano resonances, exciton induced transparency, suppressed
semiconductor quantum dot response and bistability. More complicated response can be tailored by using metal
nanoparticle shape and the placement of semiconductor quantum dots to control the local near-�elds that couple
the metal nanoparticles and semiconductor quantum dots. We describe how coupling to metal nanoparticle dark
modes and higher order multipolar modes impact interference and self-interaction e�ects. The physics of the
metal nanoparticle/semiconductor quantum dot coupling is outlined.

PACS: 73.20.Mf, 73.21.La, 78.67.Bf, 78.67.Hc

1. Introduction

Transmission of quantum information between qubits
for quantum communication, quantum computing and
quantum measurement must maintain the quantum char-
acter of the information. Di�raction limited waveguid-
ing of light (�ying qubits) only gives wavelength scale
resolution, which will not be adequate for site-to-site
nanoscale transmission. Directed transmission is needed.
One paradigm for directed nanoscale information trans-
fer couples qubits, for example in quantum dots, to plas-
monic structures. This can be done for transfer over
long distances with dielectric nanoguides [1] and over
nanoscale distances with nanoantennas or nanoguides
made from metallic nanowires and nanoparticles [2].
To exploit this paradigm for quantum, nanoscale com-

munication, one must understand how metallic nanopar-
ticles act as nanoantennas and nanoguides. One must un-
derstand the coupling between the dots and the plasmons
in metallic nanoparticles. One must also understand how
dot-to-dot quantum communication is modi�ed by trans-
fer via plasmons. Finally, one must understand how
transfer is further modi�ed if the metal nanoparticles are
small and quantum e�ects can in�uence their response.
Here we focus on the response of strongly coupled quan-
tum dot/metal nanoparticle, hybrid molecule systems to
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understand the exciton�plasmon coupling that connects
the dots to the nanoparticles. We also consider how MNP
shape can impact the exciton�plasmon coupling and the
response of the hybrid molecule.
We discuss here, theoretically, the response of hybrid

nanostructure molecules made from semiconductor quan-
tum dots (SQD) and metal nanoparticles (MNP) subject
to an optical driving �eld (see Fig. 1). This system has
been studied in the weak coupling regime [3, 4] and in
the strong coupling regime [5�11].

Fig. 1. An applied �eld polarizes both the MNP and
SQD which in turn allows for a dipole�dipole coupling.

The optical excitations of SQDs are excitons, with a
sharp, discrete response. The excitons act as quantum
emitters. The strong, local, plasmonic excitations of the
MNP provide a continuous spectrum of response. En-
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hanced local �elds in the vicinity of the MNP provide
strong coupling to neighboring SQDs. There is no di-
rect tunneling between the MNP and SQD. However,
due to the long-range Coulomb interaction, there is a
dipole�dipole interaction that allows them to couple and
leads to excitation transfer. The discrete excitons cou-
pled with the broad response of the plasmons give rise to
exotic hybrid states with clear signatures for their optical
response. As a damped driven oscillator, the SQD re-
sponse to driving �elds changes rapidly from in-phase to
out-of-phase near an SQD resonance. Rapid variations in
hybrid response are expected near the SQD resonances.
E�ects depending on the interference between applied
and induced �elds are sensitive to this phase change in
SQD response, providing dramatic signatures in the hy-
brid response.

In Sect. 2, we discuss the model that we study. We
use a density matrix approach to treat the SQD, while
the MNP is taken as a classical dielectric. In Sect. 3 we
discuss the behavior of the system in the strong coupling
regime to identify the key e�ects that determine the hy-
brid response [3, 5, 6]. In Sect. 4, we describe how MNP
shape can be used to tune the SQD/MNP coupling [12].
We conclude in Sect. 5.

2. Modeling SQD/MNP hybrid molecules

We consider a spherical SQD with radius r interact-
ing with an MNP, separated by a distance R [3, 5, 6].
The MNP could be a nanorod of length L and width
w (as shown in Fig. 1) or a nanosphere of radius a.
The entire system is subject to an applied optical �eld
E = E0 cos(ωt). We assume that all distances are small
enough that retardation e�ects can be ignored. We as-
sume that the applied �eld is large enough to be consid-
ered a classical �eld. We treat the SQD quantum me-
chanically in the density matrix formalism as a two-level
system with exciton energy ~ω0, dipole moment µ and
dielectric constant ϵS . In the dipole limit, three bright
excitons (one for each optical axis) could participate in
the interaction. By choosing the applied �eld to be ei-
ther perpendicular or parallel to the axis of the molecule,
only one of the three excitons is excited. Dark excitons
contribute to the exciton lifetime. We treat the MNP
as a classical spherical dielectric particle with dielectric
function ϵM(ω).

The Hamiltonian for the two level SQD, HSQD, is

HSQD = ~ω0â
†â− µESQD(â+ â†), (1)

where â and â† are the atomic, two-level operators repre-
senting exciton creation and annihilation. For a spherical
MNP, the �elds can be determined explicitly. ESQD is the
total electric �eld felt by the SQD and consists of the ap-
plied, external �eld, E, and the induced, internal �eld,
produced by the polarization of the MNP, EMNP,SQD. In
the dipole limit, ESQD is

ESQD =
1

ϵeffS

(
E +

1

4πϵB

sαPMNP

R3

)
, (2)

where ϵeffS = 2ϵB+ϵS
3ϵB

and sα = 2 (−1) when the applied

�eld is parallel (perpendicular) to the axis of the system.
ϵB is a background dielectric constant which would cor-
respond to the substrate on which the system is placed.
Separating out the negative and positive frequency con-
tributions, the polarization of the MNP is [13]

PMNP = (4πϵB)a
3
[
γẼ

(+)
MNP e

− iωt + γ∗Ẽ
(−)
MNP e

iωt
]
.

Ẽ
(+)
MNP and Ẽ

(−)
MNP are the positive and negative frequency

parts of the electric �eld felt by the MNP. Note that our
choice of the sign convention is such that Im(ϵm(ω)) > 0
for ω > 0. The total �eld acting on the MNP, EMNP, is

EMNP =

(
E +

1

4πϵB

sαPSQD

ϵeffSR3

)
, (3)

and γ = ϵM(ω)−ϵB
2ϵB+ϵM(ω) . We make use of the density matrix

ρ to calculate the polarization of the SQD. We label the
ground state of the SQD (no exciton) as level 1 and the
excited state (one exciton) as level 2. Then, the SQD po-
larization is PSQD = µ(ρ12+ρ21) (see [14]). Factoring out
the high-frequency time dependence of the o�-diagonal
terms of the density matrix, we write

ρ12 = ρ̃12 e
iωt, ρ21 = ρ̃21 e

− iωt. (4)

The �eld acting on the SQD is

ESQD =
~
µ

[
(Ω +Gρ̃21)e

− iωt + (Ω∗ +G∗ρ̃12)e
iωt

]
,

(5)
where

G =
s2αγa

3µ2

4πϵB~ϵ2effSR6
, Ω =

E0µ

2~ϵeffS

(
1 +

γa3 sα
R3

)
.

G arises when the applied �eld polarizes the SQD, which
in turn polarizes the MNP and then produces a �eld to
interact with the SQD. Thus, this can be thought of as
the self-interaction of the SQD because this coupling to
the SQD depends on the polarization of the SQD. The
�rst term in Ω is just the direct coupling to the applied
�eld and the second term is the �eld from the MNP that
is induced by the applied �eld. When the MNP is non-
spherical, we use the boundary element method to deter-
mine numerically these response �elds [12].

We solve the master equation

ρ̇ =
i

~
[ρ,HSQD]− Γ (ρ), (6)

where Γ (ρ) is the relaxation matrix with Γ11 = ρ11−1
τ0

,

Γ12 = Γ ∗
21 = ρ12

T20
and Γ22 = ρ22

τ0
. The relaxation time τ0

contains a contribution from nonradiative decay to dark
states. We write the density matrix elements in terms of

ρ̃12 = A+ iB, ρ̃21 = A− iB, ∆ = ρ11 − ρ22,

where ∆ is the population di�erence between the excited
and ground states. To solve (6), we make the rotating
wave approximation. When changing the Hamiltonian to
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the interaction picture we keep terms that oscillate like
e i (ω−ω0)t and neglect terms that oscillate like e i (ω+ω0)t.
Making use of our de�nitions and the rotating wave ap-
proximation, we obtain the set of coupled di�erential
equations,

Ȧ = − A

T20
+ (ω − ω0)B −

(
ΩI +GIA−GRB

)
∆,

Ḃ = − B

T20
− (ω − ω0)A−

(
ΩR +GRA+GIB

)
∆,

∆̇ =
1−∆

τ0
+ 4ΩIA+ 4ΩRB + 4GI(A

2 +B2), (7)

where GR, GI ,ΩR and ΩI are the real and imaginary
parts of G and Ω , respectively. These equations can be
solved for the steady-state limit, where the time deriva-
tives of A, B, and ∆ vanish, or by explicitly evolving the
equations in time.

3. Exciton�plasmon coupling: what matters

To understand exciton�plasmon coupling in optically
driven hybrid molecules, one must understand what mat-
ters. The coupling is de�ned by the �elds that act on each
particle. This includes the external �eld. This includes
any �eld induced at a particle arising from polarization
induced at other particles. The induced polarizations
lead to the self-interaction G: the SQD is polarized, this
polarization induces image charges in the MNP, and the
image charges then polarize the SQD. The induced image
charge depends on the polarization of the dot, so the dot
polarization couples to itself.
How these �elds interfere at each particle de�nes the

total strength of the polarizing �eld at each particle. The
MNP resonance is broad. Near this dipolar resonance,
the spectral dispersion is weak and the phase of its re-
sponse changes slowly near resonance. In comparison, an
SQD has sharp resonances, with rapid spectral dispersion
and large phase changes near resonance. Below the SQD
resonance, the SQD polarization and the �elds it gener-
ates are in phase with the external driving �eld. Above
the SQD resonance, the external �eld and the �eld due
to the SQD polarization are out of phase. This change
in phase drastically alters the response at the MNP and
at the SQD.
Finally, the relative strength of the external �eld and

the induced �elds is important. We assume in the model
that each of the particles responds linearly to the �eld
acting on it. For the SQD, the strength of this response
changes rapidly near the sharp SQD resonance. The po-
larization of the SQD, PSQD, depends on the coherence,
ρ12, induced on the SQD. From Eq. (7), the level exci-
tation and coherence build up when strong coupling to
the driving and induced �elds compensates for decay due
to decoherence. Far from resonance and in weak �elds,
the excitation is weak and the decoherence prevents a
buildup of ρ12. In this limit, the external �eld and the
polarization of the MNP by the external �eld are the sig-

ni�cant �elds. Close to the SQD resonance and for large
driving �elds, the coherence can be maintained, despite
any decoherence, and the �elds induced by the polariza-
tion of the SQD become important as well.
The exciton�plasmon coupling is de�ned by what hap-

pens in the weak and strong �eld limits [3, 5, 6]. To
understand these limits we consider a hybrid molecule
with a single SQD coupled to an Au MNP. We discuss
the case where the external �eld is along the molecule
axis. We use an empirical dielectric function to describe
the bulk Au response [15]. For the SQD, we consider
a resonance at 2.5 eV and decay times τ0 = 0.8 ns and
T20 = 0.3 ns [5, 6]. For weak driving �elds (intensi-
ties I ≈ 1 W/cm2) [3], the polarization of the SQD is
insigni�cant and the main e�ect of the coupling is an
enhancement and broadening of the SQD response for
larger SQD/MNP separations R and a quenching of the
SQD for small R.
For strong �elds (i.e. �elds that drive the SQD strong

enough to maintain the SQD coherence in steady state,
typically I ≈ 1000 W/cm2, as shown in Fig. 2) the �eld
induced by the SQD polarization becomes important. As
a result, there is a Fano resonance in the steady-state
response of the MNP, with the external �eld and the �eld
from the SQD constructively interfering below the SQD
resonance and destructively interfering above the SQD
resonance [3]. As the SQD transition dipole moment,
µ, is increased or R is decreased, the �eld at the MNP
due to the SQD polarization can become comparable to
the driving �eld. Above resonance, the �eld acting on
the MNP can be completely cancelled by the destructive
interference. At the frequency where this cancellation
occurs there is an exciton induced transparency (EXIT)
in the response of the MNP.

Fig. 2. Steady-state Fano resonance: R = 13 nm, a =
3 nm, µ = 0.25 e nm. Steady-state MNP absorption
rate, QMNP, shows a Fano lineshape due to the phase
change in dipole moment of the SQD. This phase change
is shown in the real part of the SQD dipole moment in
the right inset. Left inset shows the sharp dip in the
population di�erence at resonance. See Ref. [6].

When the coupling between the SQD and MNP is large
(i.e. for large SQD transition dipole moments, small R,
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or large MNP radius a), the SQD self-interaction due to
the image charge it induces on the MNP can also be-
come signi�cant [6]. In this limit, the �eld on the SQD
due to the image charges can be comparable to the ex-
ternal driving �eld and the �eld directly from the MNP
induced when the MNP is polarized by the external �eld.
These two direct �elds have the same phase. The phase
of the �eld due to the self-interaction changes rapidly at
the SQD resonance. As with the Fano resonance in the
MNP response, the SQD response can be dramatically
di�erent above and below resonance when the coupling
is strong enough. Below resonance, the self-interaction G
acts in phase with the direct �elds Ω , leading to an even
stronger polarization of the SQD. Above resonance, de-
structive interference weakens the �eld acting on the SQD
and the excitation of the SQD is turned o�. This sup-
pression of the above resonance SQD response is shown
in Fig. 3. For strong coupling, ∆ has an asymmetric
line shape with reduced SQD excitation above resonance
(compare with Fig. 2).

Fig. 3. Weak suppression. R = 13 nm, a = 7 nm, µ =
1 e nm. The onset of suppression of the SQD response
is apparent in the asymmetry of ∆. See Ref. [6].

For larger coupling the suppression can lead to a dis-
continuous response, as shown in Fig. 4. Below reso-
nance, where a strong �eld acts on the SQD, the SQD
response is broadened. Above resonance, the SQD re-
sponse is suppressed and drastically narrows. As a result
of the non-linear self-interaction, the SQD response can
switch between these dramatically di�erent limits. Below
resonance, the SQD responds as a broad resonance in a
strong �eld, strong coupling regime. Above resonance,
the SQD responds as if it were a sharp line in the weak
�eld limit.
Everything discussed so far pertains to the steady

state response of the hybrid molecule. This dramatic,
discontinuous change in SQD response is the �rst hint
of the bistable response that arises, due to the nonlin-
ear self-interaction, for further increases in interparticle
coupling [5, 6, 16]. In the bistable regime, there is no
unique steady-state. Rather, the evolution of the hybrid

Fig. 4. Strong suppression. R = 13 nm, a = 7 nm,
µ = 2 e nm. See Ref. [6].

molecule depends on the initial state of the SQD. When
the SQD starts in a weakly excited state, it evolves to a
state that remains weakly excited, even near resonance,
because the suppression dominates the near-resonance
response. However, if the SQD starts strongly excited,
then it can remain strongly excited below but near to
the resonance but switches to the weakly excited state
above resonance. This state-dependent optical bistability
is the basis for possible applications to nanoscale optical
switching [16].

4. E�ect of MNP shape

So far, we have discussed exciton�plasmon coupling in
optically driven SQD/MNP hybrids when the MNP is a
spherical particle with dipolar plasmonic response. When
the MNP has a more complicated geometry, for example
a nanorod, there is greater �exibility to tailor the SQD/
MNP response [12]. Local �elds are more enhanced at
the ends of long, narrow nanorods than near the surface
of a spherical MNP. This feature alone can signi�cantly
enhance the local coupling, making strong-�eld/strong-
-coupling e�ects accessible for a broader range of particle
sizes, separations and transition dipole moments. More
importantly, a nanorod can have a variety of higher order
modes that could contribute to the SQD/MNP coupling.
These modes can be higher order bright modes that, like
the dipolar mode, respond both to the external �eld and
to any local �elds from other particles. However, these
higher-order MNP modes can also be dark modes, which
do not respond to the external �eld but do respond to the
local �elds from the other particles. Near the dark-mode
resonance, the external �eld cannot polarize the MNP so
there are no directly induced polarization �elds from the
MNP acting on the SQD. Ω includes only the external
�eld. The MNP couples to the SQD only via the in-
duced self-interaction. At these modes, the relative con-
tribution of Ω and the self-interaction G on the SQD is
changed, leading to signi�cantly stronger self-interaction
e�ects [12]. The choice of MNP shape provides a �ex-
ibility to tune the MNP resonance frequency to better
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match the SQD resonance, to enhance the local �elds,
and to change the character of the SQD/MNP coupling
that de�nes the response of optically driven hybrids.

5. Concluding remarks

We study hybrid semiconductor quantum dot/metal
nanoparticle molecules in the weak and strong coupling
regimes to understand better how to connect SQDs to
MNPs in structures intended for nanoscale coherent
information transfer. In strongly driven, strongly dipole-
-coupled SQD�MNP hybrids with spherical MNPs,
interference, dispersion near resonance and self interac-
tion de�ne the MNP/SQD coupling and lead to the Fano
resonances, exciton induced transparency, suppressed
SQD response and bistability. SQD dispersion plays a
key role, providing constructive interference of the �elds
below the SQD resonance and destructive interference
above the SQD resonance. This can lead to suppressed,
weak MNP and SQD response above resonance even
when the MNP and SQD are strongly coupled and
strongly driven by an external �eld. More complicated
response can be tailored by using MNP shape and the
placement of SQDs to control the local near-�elds that
couple the MNPs and SQDs. MNPs that support dark
modes will provide a coupling that enhances the relative
importance of the self-interaction e�ects, providing a
means to tailor the character as well as the strength of
the coupling.
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