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Electron and Exciton Quasi-Stationary s-States
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The theoretical calculation of spectral parameters of electron and exciton quasi-stationary s-states in open
spherical quantum dot is performed within the e�ective mass approximation and rectangular potentials model.
The conceptions of probability distribution functions (over quasi-momentum or energy) of electron location inside
of quantum dot and their spectral characteristics: generalized resonance energies and widths are introduced. It
is shown that the generalized resonance energies and widths, obtained within the distribution functions, satisfy
the Heisenberg uncertainty principle for the barrier widths varying from zero to in�nity. At the same time, the
ordinary resonance energies and widths de�ned as complex poles of scattering S-matrix, do not satisfy it for the
small barrier widths and, therefore, are correct only for the open quantum dots with rather wide potential barriers.

PACS: 71.15.Dx, 73.21.La, 73.22.Dj, 73.90.+f

1. Introduction

The modern experimental abilities of infrared range
cascade lasers, resonance tunnel diodes and separable
quantum dots production and wide perspectives of their
utilization in microbiology and medicine [1�4] constantly
stimulate the interest of theoretical investigations of open
nanostructures. The explaining of all physical phenom-
ena in them is connected with the description of electron
and exciton quasi-stationary spectra and interaction of
these quasi-particles with classic and quantized �elds.
The electron spectrum in open quantum �lms, wires

and dots is studied using di�erent theoretical methods
[5�11]. In the framework of the e�ective mass approxima-
tion and rectangular potential barriers model, the quasi-
-stationary electron spectrum in open spherical quan-
tum dot (QD) is usually studied within the scattering
S-matrix method [7, 8, 11] because it allows the exact
solution of the Schrödinger equation. The complex poles
of S-matrix de�ne the resonance energies (REs) and res-
onance widths (RWs) of electron in open spherical QD
with wide barriers rather well [11].
Nevertheless, it is already established that the quasi-

-stationary electron (exciton) spectrum in open spherical
QD with thin and super thin barriers, the most perspec-
tive for the practical utilization, cannot be de�ned by the
complex poles of S-matrix [11].
In this paper, the new characteristics of electron and

exciton states in open spherical QDs: the generalized
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resonance energies (GREs) and generalized resonance
widths (GRWs) valid at arbitrary potential barrier width
are introduced and studied. It is also proven that
the universal characteristic of electron or exciton quasi-
-stationary states (QSSs) in open spherical QD is the
probability distribution function (over quasi-momentum
or energy) of quasi- particle located inside of QD. The de-
pendences of electron and exciton GREs and GRWs on
the barrier width is studied for InAs/GaAs/InAs nano-
structure.

2. S-matrix and probability distribution

functions of quasi-particles located

inside of open spherical QD

The open spherical QD (Fig. 1) consisting of semicon-
ductor core (0) inside of the shell (1) embedded into the
outer medium (2) is under study. The radius of core-well
is r0 and thickness of barrier-shell is ∆. In spherical co-
ordinate system with the beginning in QD center, the
electron or hole e�ective masses and potential energies
are �xed by the expressions

m(r) =

{
m0,

m1,
,

U(r) =

{
0, 0 ≤ r ≤ r0, r0 +∆ ≤ r < ∞,

U, r0 ≤ r ≤ r1 = r0 +∆.
(1)

Using the Hamiltonian of the system

(207)
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Fig. 1. Geometrical and potential energy schemes of
open spherical QD.

H = −~2

2
∇ 1

m(r)
∇+ U(r), (2)

we solve the stationary Schrödinger equation exactly and
obtain the complete set of wave functions

Ψℓmk(r, θ, φ) = Rℓk(r)Yℓm(θ, φ). (3)

Here, Yℓm(θ, φ) � the spherical functions (ℓ =
0, 1, 2, . . . ;m = 0,±1,±2, . . .) and the radial ones Rℓk(r)
are taken as linear combinations of the Hankel functions

Rℓk =



R
(0)
ℓ (kr) = a

(0)
ℓ

[
h−
ℓ (kr) + h+

ℓ (kr)
]
,

0 ≤ r ≤ r0,

R
(1)
ℓ (kr) = a

(1)
ℓ

[
h−
ℓ (iχr) + S

(1)
ℓ h+

ℓ (iχr)
]
,

r0 ≤ r ≤ r1 = r0 +∆,

R
(2)
ℓ (kr) = a

(2)
ℓ

[
h−
ℓ (kr) + Sℓ(k)h

+
ℓ (kr)

]
,

r0 +∆ ≤ r < ∞,
(4)

where

k = ~−1
√
2m0E, χ =

√
(k20 − k2)m1/m0,

k0 = ~−1
√
2m0U. (5)

The continuity conditions of radial wave functions and
their densities of currents at all nanostructure interfaces
together with the normalizing one, de�ne all unknown
coe�cients and scattering Sℓ(k)-matrix [7, 8, 11].

Further, avoiding the sophisticated expressions, we are
going to observe only the s-states (ℓ = 0). The exact
analytical expression for S0(k) ≡ S(k) matrix in under
barrier region of energy spectrum (E ≤ U, k ≤ k0) is
conveniently written in the form

S(k) = e−2 ikr1
1 + iZ(k)

1− iZ(k)
, (6)

where

Z(k) =
kr1

1− m0

m1

[
1− χr1

1+ξ(k) exp(−2χ∆)
1−ξ(k) exp(−2χ∆)

] , (7)

ξ(k) =
m1kr0cot(kr0)−m0χr0 +m0 −m1

m1kr0cot(kr0) +m0χr0 +m0 −m1
. (8)

S(k)-matrix (6), of course, coincides to the one obtained
in Refs. [7, 8, 11] in other analytical form, but its expres-
sion through the real Z(k) function has the advantages
which would be clear further. Especially, the expression
(6) is valid for k > k0 (E > U) at the condition χ → iχ
in Z(k) function.
Now, we introduce the probability distribution func-

tions W (k) or W (E) (over quasi- momentum or energy)
of quasi-particle located inside of open spherical QD (in
the sphere of r1 = r0 +∆ radius)

W (k) =
1

r1

∫ r1

0

|X(kr)|2dr,

W (E) =
1

r1

∫ r1

0

|XE(r)|2dr, (9)

where

X(kr) = rR(kr), XE = rRE(r). (10)

The calculation of these functions is analytically per-
formed exactly. Really, using Schrödinger Eq. (2) for the
two close energy values (E and E1) we obtain

W (E) =
1

r1

~2

2m0
lim

E1→E

1

E1 − E

[
XE1(r)X

′
E(r)

− X ′
E1
(r)XE(r)

]∣∣
r=r1

. (11)

According to the general theory [12, 13], for r ≥ r1 where

U(r) = 0, X
(2)
E (r) function is written as

X
(2)
E (r) =

√
2

π
sin(kr + δ), (12)

where the phase (δ) is related to the S-matrix through
the expression

S(k) = e2 iδ(k), (13)

after some transformations it is obtained

W (k) =
k

πr1

[
1 + Z2(k)

]−1 d

dk

(
Z(k)

k

)
. (14)

Taking into account the analytical form of Z(k) (7), we
get the exact and convenient for calculations expression
for the probability distribution function at k ≤ k0:

W (k) =
kr1
π

{√
m0

m1

k

χ

[
ξ2 + exp(−4χ∆)

]
+2 exp(−2χ∆)

(
χ
m0

m1
ξ′ −

√
m0

m1
2ξ∆

)}
/([

1 + Z(k)2
]{

χr1
m0

m1
[ξ + exp(−2χ∆)]

+
m1 −m0

m1
[ξ − exp(−2χ∆)]

})
, (15)

where

ξ′ = 2
m0

m1
r0

{
kχr20

[
1 + cot2(kr0)

]
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−
(
1+

√
m1

m0

k2

χ2

)
χr0cot(kr0) +

m1−m0

m1

√
m1

m0

k

χ

}
/{[

kr0cot(kr0)−
m0

m1
χr0 −

m1 −m0

m1

]2}
. (16)

Expression (15) for the distribution function W (k)
(and equivalent to it W (E)) stays valid also for k ≥ k0
(E ≥ U) when χ → iχ. Further, it is proven that just
W (E) distribution function allows introducing the GRE
and GRW conceptions which are true independently of
the width of the open spherical potential barrier.
The Hamiltonian of exciton has the form

Hex = Eg +He(re) +Hh(rh)−
e2

ε|re − rh|
. (17)

Here, Eg � band gap energy, He(re), Hh(rh) � the elec-
tron and hole Hamiltonians, expression (2) and ε � di-
electric constant of �0� and �2� media where the quasi-
-particles are mainly located.
The Schrödinger equation with Hamiltonian (17) can-

not be solved exactly. Thus, the approximated method
is used. When the sum of uncoupling electron and hole
resonance energies in the respective exciton QSS is much
bigger than the energy of their interaction in these states,
it can be assumed that the probability distribution func-
tion over quasimomentum for the exciton located in open
spherical QD is given by the expression

W (ke, kh) = W (ke)W (kh)

=
kekh
π2r21

d
[
k−1
e Ze(ke)

]
/dke

[1 + Z2
e (ke)]

d
[
k−1
h Zh(kh)

]
/dkh

[1 + Z2
h(kh)]

.

(18)

Using (5) and (18), we obtain the probability distribu-
tion function over the energy for the exciton located in
open spherical QD

W (Ee, Eh) = W (Ee)W (Eh),

�xing the exciton GREs and GRWs in spherically-
-symmetric states (ℓ = 0).

3. Electron and exciton quasi-stationary s-states
in open spherical QD

The calculation of the probability distribution func-
tions of electron and exciton located in open spherical
QD is performed according to the developed theory for
InAs/GaAs/InAs nanostructure with physical parame-
ters presented in Table.

TABLE

Physical parameters of InAs/GaAs/InAs nanostructure.

me mh a [Å] ε∞ ε0 Eg [eV]
InAs 0.022 0.41 6.058 15.1 16.3 0.35
GaAs 0.067 0.5 5.653 10.9 12.9 1.52

Let us, �rst of all, analyze the main properties ofW (k)
and W (E) functions for the electron. They would give
the opportunity to introduce the conceptions of GREs
and GRWs of QSSs in such a way that the latter would
be valid for the whole in�nite range of barrier widths
(∆ is given in the units of InAs lattice constant a) and
at χ∆ > 1 would coincide to the usual REs and RWs
obtained from the complex poles of S-matrix according
to Refs. [12, 13].

The electron distribution functions W (K = kr0) and
W (E) are shown in Fig. 2. It is clear that their prop-
erties are di�erent for di�erent barrier widths: small
(0 ≤ ∆ ≪ r0), relative (∆ ≤ r0); and big (∆ > r0). Let
us observe W (K) and W (E) peculiarities for the small
∆ magnitudes (Fig. 2). When the potential barrier is
absent (∆ = 0), from the expression for probability dis-
tribution function

W (K)|∆=0 =
1

π
(1− j0(K)) =

1

π

[
1− sin(2K)

2K

]
,

K = kr0, (19)

and Fig. 2 one can see that W (K) and W (E) functions
perform the quasi-periodical oscillations respectively the
average value

W̄
∣∣
∆=0

= lim
A→∞

1

A

∫ ∞

0

W (K)dK =
1

π
(20)

consistently taking minimum (W<
n = 2

π sin2 k<n r0)

and maximum (W>
n = 2

π sin2 k>n r0) values, (n =

0, 1, 2, . . . ,∞) at k<n = r−1
0 K2n, k

>
n = r−1

0 K2n+1, where
K2n and K2n+1 are the even and odd roots of the equa-
tion

W ′(K)|∆=0 = 0, or Kcot(K) = 1. (21)

The oscillations ofW (K) andW (E) functions inK- or
E-scales, respectively, create the continuous sequence of
peaks (ne = 1, 2, 3, . . .∞), each characterized by its max-
imum and width. As far as it is true for any width, it
is reasonable to introduce two main spectral characteris-
tics of n-th electron peak: GRE: Ew

ne
= ~2(k>ne

)2/(2m0),
corresponding to the maximum of Wne(K

>
ne
), and GRW:

Γw
ne

= E
(+)
ne −E

(−)
ne , where E

(±)
ne energies are the roots of

the equation, de�ned by the natural condition (Fig. 2):

2W (E) = W (K>
ne
) +W (K<

ne
). (22)

From Fig. 2 one can see that for increasing ∆, the
heights of all under barrier peaks are growing in the vicin-
ity of resonances due to the decrease of W in intervals
between the resonances. Since, at the increasing ∆ these
peaks have at �rst the quasi-Lorentz shape and then con-
sistently transform into δ-like functions with maxima at
K ∼ Kne . At limit case ∆ → ∞, GRWs of under barrier
QSSs tend to zero (Γw

ne
→ 0) and their GREs (Ew

ne
) co-

incide to the stationary electron energy spectrum (Ec
ne
)

in closed spherical QD, as it must be according to the
physical considerations.

Analyzing now the spectral parameters: GREs and
GRWs of the electron QSSs in open spherical QD, we
must note that they satisfy Heisenberg uncertainty prin-
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Fig. 2. Evolution of electron probability distribution
functions (W (K = kr0) and W (E)) at the small barrier
width of open spherical QD and r0 = 50a.

ciple at the whole range of barrier widths (0 ≤ ∆ < ∞).
Also, for the big barrier widths they must be equal to the
REs and RWs de�ned from the complex poles of scatter-
ing S-matrix.

Fig. 3. Dependences of electron spectral parameters
Γw,s
ne

(a) and Ew,s
ne

(b) on the barrier width ∆.

In Fig. 3, where Ew
ne
, Γw

ne
and Es

ne
, Γ s

ne
dependences

on ∆ are shown, one can see that GREs and GRWs sat-
isfy all abovementioned demands. From Fig. 3a,b it is
clear that for the under barrier energies (E < U) for the
barrier of one monoshell (a) order or bigger, the QSSs
spectral parameters (Ew

ne
, Es

ne
and Γw

ne
, Γ s

ne
), de�ned

within W function and S-matrix are better coinciding
between each other, the bigger is the width ∆. When
the barrier width is smaller than a and tends to zero,
the REs (Es

ne
) also tend to zero and RWs (Γ s

ne
) increase

tending to in�nity. It causes that αs
ne
(∆) = Es

ne
/Γ s

ne

(dash curves at inset in Fig. 3a) at small ∆ become
smaller than 1/2, contradicting the Heisenberg princi-
ple (Enetne = ~Ene/Γne = ~αs

ne
≥ ~/2). As far as

GREs (Ew
ne
) and GRWs (Γw

ne
) are concerned, at ∆ tend-

ing to zero, the both parameters tend to the �nite magni-
tudes always satisfying Heisenberg principle (solid curves
at the inset). Finally, let us note that at ∆ → ∞

Γw
ne

→ Γ s
ne

→ 0 and Ew
ne

→ Es
ne

→ Ec
ne
, where Ec

ne
�

energies of bound stationary states of electron in closed
spherical QD.
The GREs, REs and GRWs, RWs of exciton QSSs are

calculated within the approximated method, using the
following considerations. When the electron�hole inter-
action is neglected, the energies and widths of exciton
QSS s-states are de�ned, depending on the method, by
the formulae

E(0)w,s
nenh

= Eg + Ew,s
ne

+ Ew,s
nh

;

Γ (0)w,s
nenh

= Γw,s
ne

+ Γw,s
nh

, (23)

where Ew
nenh

, Γw
nenh

� the GREs and GRWs of electron
(e) and hole (h) QSSs, obtained before within the proba-
bility distribution function and Es

nenh
,Γ s

nenh
� the REs

and RWs of the same states, obtained as the complex
poles of S-matrix.
The Coulomb potential energy of electron�hole inter-

action does not create the additional potential barrier for
the transition of both quasi-particles from QD. Thus, we
assume that it is only renormalizing the energy of exciton
QSSs without changing their widths in the �rst approx-
imation. The renormalized energies of QSSs |nenh⟩ in
open nanostructure cannot be calculated using the wave
functions normalized at δ-function. Therefore, the calcu-
lation of electron�hole binding energy (∆Enenh

) is per-
formed as in Ref. [14]. Instead of the single open spherical
QD we observe the equivalent two-well closed spherical
QD with so big width of the outer shell-well that the en-
ergies and widths of �former� resonance states with good
exactness coincide to the respective REs and RWs in open
QD. Herein, we use the perturbation theory and in the
�rst approximation the corrections to the exciton REs
are written as

∆Enenh
= −e2

ε

∫ ∞

0

dre

∫ ∞

0

drh|Rne(re)|
2|Rnh

(rh)|2

× r2er
2
h

{
r−1
e , re ≥ rh,

r−1
h , rh ≥ re,

(24)

where Rne(re), Rnh
(rh) � electron (e) and hole (h) wave

functions in the states ne and nh of two-well closed spher-
ical QD, approximating open spherical QD [14].
Thus, the spectral characteristics: energies (Ew,s

nenh
)

and widths (Γw,s
nenh

) are �xed by the expressions

Ew,s
nenh

= Eg +∆Enenh
+ Ew,s

ne
+ Ew,s

nh
;

Γw,s
nenh

= Γw,s
ne

+ Γw,s
nh

. (25)

The numeric calculations of exciton REs (Es
nenh

), RWs
(Γ s

nenh
) and GREs (Ew

nenh
), GRWs (Γw

nenh
) are performed

for open spherical QD InAs/GaAs/InAs. Herein, Es
ne
,

Es
nh

and Γ s
ne
, Γ s

nh
are �xed by the complex poles of

the respective Se- and Sh-matrixes. The generalized
energies, �xed by the formulae: Ew

ne
= ~2(k>ne

)2/2me,

Ew
nh

= ~2(k>nh
)2/2mh and widths: Γw

ne
= E

(+)
ne − E

(−)
ne ,

Γw
nh

= E
(+)
nh − E

(−)
nh are de�ned as the corresponding

spectral parameters of probability distribution function
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for exciton in QD (Fig. 4, without accounting of the
band gap energy Eg). In Fig. 4a the spatial shape of
probability distribution function W (ke, kh) in k-space is
presented. In Fig. 4b the �rst peak of W (Ee, Eh) dis-
tribution function together with the respective terms of
generalized energies (Ew

e1, E
w
h1) and widths (Γw

e1,Γ
w
h1) are

shown.

Fig. 4. Probability distribution functions
W (ke, kh) (a), W (Ee, Eh) (b) and spectral param-
eters of electron and hole quasi-stationary states.

Fig. 5. Dependences of exciton spectral parameters
Γw,s
nenh

(a) and Ew,s
nenh

(b) on the barrier width ∆.

The typical dependences of generalized resonance (w)
and resonance (s) spectral parameters of several exciton
QSSs on the barrier width (∆) are given in Fig. 5 (with-
out accounting of the band gap energy Eg). The �gure
proves that the exciton spectral parameters (the same
for the electron and hole), determined by both methods,
coincide well at ∆ ≥ 2a ≥ 1 nm and strongly di�er for
the small barrier widths. The GREs of exciton QSSs
weakly depend on barrier thickness and GRWs increase,
approaching some �nite magnitudes for the smaller bar-
rier widths. For the rather big widths, the REs and RWs,
obtained from the complex poles of S-matrix give the
true magnitudes while at small ∆ these magnitudes are
not correct because they contradict the Heisenberg un-
certainty principle.

4. Conclusions

The spectral parameters (REs and RWs) of spheri-
cally symmetric electron, hole and exciton QSSs in open
spherical QD calculated within the method of complex
S-matrix poles are true in the wide range of barrier
widths (∆) except the small ones (∆ ≪ r0), where these
magnitudes contradict the Heisenberg uncertainty prin-
ciple.
The probability distribution functions (W (k), W (E))

of electron located inside of open spherical QD and their
spectral parameters (GREs and GRWs) correctly de-
scribe the spherically symmetric QSSs in the whole in-
�nite range of barrier widths satisfying the Heisenberg
principle.
The proposed method of electron, hole and exciton

GREs and GRWs calculation, after several modi�cations,
can be also used for the multishell open quantum dots,
wires and �lms. Thus, it would be actual for the evalua-
tion of spectral characteristics of QSSs in resonance tun-
nel devices produced at the base of open nanostructures
with thin barriers.
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