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Next Nearest Neighbors E�ects on Berry Curvature

of Graphene
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In this paper energy bands and Berry curvature of graphene was studied. Desired Hamiltonian regarding
the next-nearest neighbors was obtained by tight-binding model. By using the second quantization approach, the
transformation matrix is calculated and the Hamiltonian of system is diagonalized. With this Hamiltonian, the
band structure and wave function can be calculated. By using calculated wave function the Berry connection and
Berry curvature of our system are calculated. Our results are exactly consistent with previous methods and also
the Berry curvature throughout the Brillouin zone get zero.
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1. Introduction

Graphene produces a lot of excitement in the scien-
ti�c world and has generated intense interest since it was
�rstly discovered in 2004 [1]. Carbon atoms are strongly
bonded by sp2 hybridization and form one-atom thick
hexagonal network, which is called graphene and can be
seen with an ordinary optical microscope [1�3]. It is
well known that graphene is a zero-gap semiconductor
and conducts electricity better than silicon [4]. Tight-
-binding (TB) approach is widely used to investigate
physical properties of graphene and carbon nanotubes
[5�10]. The �rst TB description of graphene was given
by Wallace, who only took the nearest and next-nearest
neighbor atoms into account [10]. After that, Saito et al.
[11] considered the non�nite overlap between the basic
function, but included only the nearest neighbors within
the graphene sheet.
On the other hand, there is a Berry phase concept in

solid state physics. In 1984, Berry wrote a paper that
has generated immense interests throughout the di�er-
ent �elds of physics including quantum chemistry [12] so
the Berry curvature of graphene throughout the Brillouin
zone was calculated.

2. Graphene energy band structure by nearest

and next nearest neighbors

Graphene is made out of carbon atoms arranged in
hexagonal structure, as shown in Fig. 1. The structure
can be seen as a triangular lattice with a basis of two
atoms per unit cell. The lattice vectors can be written as
a1 = a

2 (3,
√
3), a2 = a

2 (3,−
√
3) where a = 1.42 Å is the

carbon�carbon distance. The reciprocal-lattice vectors
are given by b1 = 2π

3a (1,
√
3), b2 = 2π

3a (1,−
√
3).
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Fig. 1. Honeycomb lattice and Brillouin zone [13].

Of particular importance for the physics of graphene
are the two points K and K ′, at the corners of the
graphene Brillouin zone (BZ). These are named the
Dirac points. Their positions in momentum space are
given by K =

(
2π
3a ,

2π
3
√
3

)
, K ′ =

(
2π
3a ,

−2π
3
√
3a

)
. Three

nearest-neighbor vectors in real space are given by δ1 =
a
2 (1,

√
3)δ2 = a

2 (1,−
√
3)δ3 = −a(1.0), while the six

second-nearest neighbors are located at δ′1 = ±a1, δ′2 =
±a2, δ′3 = ±(a2 − a1).

The tight-binding Hamiltonian for electrons in
graphene considering that electrons can hop to both
nearest- and next-nearest-neighbor atoms has the form
(we use units such that ~ = 1):

H = −t
∑
⟨i,j⟩

(
a†i bj +H.c.

)
− t′

∑
⟨⟨i,j⟩⟩

(
a†iaj + b†i bj +H.c.

)
, (2.1)

where ai,σ (a†i,σ) annihilates (creates) an electron
with spin σ (σ =↑, ↓) on site Ri on sublattice A
(an equivalent de�nition is used for sublattice B), t
(≈ 2.8 eV) [13] is the nearest-neighbor hopping energy
(hopping between di�erent sublattices), and t′ is the
next nearest-neighbor hopping energy (hopping in the

(180)
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same sublattice) [13]. The value of t′ is not well known
but ab initio calculations [6] �nd 0.02t . t′ . 0.2t
depending on the tight-binding parameterization.
By means of the Fourier transformation on operator
the Hamiltonian is H = −t

∑
i[a(k)

†b(k) exp(ikδi) +
b(k)†a(k) exp(− ikδi)] + t′

∑
i[a(k)

†a(k)(exp(ikηi) +
exp(− ikηi)] + b(k)†b(k)[exp(ikηi) + exp(− ikηi)]. By
de�nition of f(k) = −t(exp(ika1) + exp(ika2) + 1) and
s(k) = cos(ka1)+cos(ka2)+cos(k(a2−a1)) and relation
between a and δ the Hamiltonian have the form

H =
(
a(k)† b(k)†

)( t†s(k) tf(k)

tf(−k) t†s(k)

)(
a(k)

b(k)

)
.

(2.2)
The energy bands derived from this Hamiltonian are
obtained by diagonalization of Hamiltonian by transfor-
mation matrix S, so

H =
(
a(k)† b(k)†

)
SS−1HSS−1

(
a(k)

b(k)

)
. (2.3)

S can be found by some calculation

S =

( √
f(k)
f(−k) −

√
f(k)
f(−k)

1 1

)
,

S−1 = 1/2


√

f(−k)
f(k) 1

−
√

f(−k)
f(k) 1

.
Diagonalized Hamiltonian has the form

Hd = (2.4)(
t′s(k) + t

√
f(k)f(−k) 0

0 t′s(k)− t
√
f(k)f(−k)

)
.

Energy dispersion relations are

E1 = t′s(k) + t
√
f(k)f(−k), (2.5)

E2 = t′s(k)− t
√
f(k)f(−k). (2.6)

In this stage by choosing (2.5), (2.6) for upper and
lower energy band, we show the full band structure of
graphene with both t′ and t in Fig. 2.

Fig. 2. Electronic dispersion in honeycomb lattice.

3. Berry curvature throughout Brillouin zone

In the next step we focused on calculation of the Berry
curvature. Now, let us de�ne the Berry connection in the
following way:

Ak =
∑

occupied state

⟨ψ| i∂k|ψ⟩. (3.1)

The Berry connection implies the Berry curvature as fol-
lows [14]:

Ωkx,ky = ∂kxAky − ∂kyAkx . (3.2)
So �nding the eigenstates of Hamiltonian in new state
is necessary. The total function for c1(k)

†|0⟩ is lin-
ear combination of |φA⟩ that located in position of car-
bons A and |φB⟩ that located in position of carbons B.
Also for c2(k)

†|φA⟩ = 1√
N

∑
R e ikR|pz, R⟩, |φB⟩ =

1√
N

∑
R e ikR|pz, R − d⟩. The pz atomic orbitals are ori-

ented perpendicular to the plane and are rotational sym-
metric around the z-axis. By

c1(k)
† =

√
f(k)

f(−k)
a(k)† + b(k)†, (3.3)

c2(k)
† = −

√
f(k)

f(−k)
a(k)† + b(k)†. (3.4)

We �nd |ψ⟩ as

|ψ⟩ = 1√
N

∑
R

e ikR

(√
f(k)

f(−k)
|pz, R⟩+ |pz, R− d⟩

)
.

(3.5)
By �nding eigenstates (3.5) and replacing on the Berry
curvature Eq. (3.2) we have Ωkx,ky = 0.

4. Breaking symmetry and Berry phase

in Dirac points

By consideration of Eq. (2.1), low-energy description
near the Dirac points can be written as

H = υ(ξqxσx + qyσy)− 3t′I, (4.1)

where υ =
√
3
2 at ≈ 106 m/s is the Fermi velocity, (σx, σy)

are the Pauli matrices and ξ = ±1, for one K point (e.g.
ξ = +1) we have a 2 component wave function that called
pseudo spinor wave function (massless Dirac fermions),

Ψ =
1√
2
(± ) 1e iθq ,

where θq = tan−1(qy/qx). With replacement in Eq. (3.1)
the connection is acquired

Aqy =
−qx

2(q2y + q2x)
, (4.2)

Aqx =
qy

2(q2y + q2x)
, (4.3)

and by Eqs. (3.2), (4.2), (4.3) the Berry curvature is equal
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∂qxAqy =
−2q2y

4(q2y + q2x)
2
, (4.4)

∂qyAqx =
−2q2y

4(q2y + q2x)
2
, (4.5)

Ωqy,qx = ∂qyAqx − ∂qxAqy = 0. (4.6)

But the Berry phase is

φBerry =

∮ 2π

0

⟨Ψ | i∂θ|Ψ⟩dθ = ±π.

The rotation in k space by 2π leads to the change in the
phase by π, i.e., a sign change. In these models where
nearest neighbor hopping or next nearest neighbor hop-
ping are taken into account, there is still an accidental de-
generacy that makes the particle-like band of one �avor to
be degenerate with the antiparticle-like (hole-like) band
of the other �avor at the K (K ′) point in each valley.
This degeneracy can be easily lifted by the application
of a perpendicular electric �eld that breaks the inversion
symmetry in the system [13]. In graphene, the quantum
Berry phase in the presence of magnetic �eld leads to
anomalous half-integer quantum Hall e�ect [2, 15].
Next by adding the �eld (graphene on substrate), we

reviewed its e�ects on the Berry curvature of the Dirac
points. In graphene the A sites are identical to the B
sites modulo a π rotation, so the energies EA = EB [16].
But as detailed in Ref. [17], we allow for di�erent site
energies (EA ̸= EB), as in hexagonal boron nitride, and
take the graphene limit where it is appropriate. So the
Hamiltonian has a form

H =
∑
i

(
EAa†iai + EBb†i bi

)
− t
∑
⟨i,j⟩

(
a†i bj +H.c.

)
− t′

∑
⟨⟨i,j⟩⟩

(
a†iaj + b†i bj +H.c.

)
. (4.7)

Here the energy di�erence ∆ is de�ned by ∆ ≡ EA−EB

2 ,
and the energy origin is chosen such that EA+EB

2 = 0. For
relatively low doping, we can resort to the low-energy
description near the Dirac points. The Hamiltonian is
given by [17, 18]:

H = v(ξqxσx + qyσy) +
∆

2
σz − 3t′I, (4.8)

where σ is the Pauli matrix accounting for the sublattice
index, and q is measured from the valley center K1,2 =
(±4π/3a)x̂ with a being the lattice constant. The Berry
curvature of the conduction band is given by [18]:

Ωqx,qy = ξ
3a2t2∆

2(∆2 + 3q2t2a2)3/2
. (4.9)

We remark that as ∆ goes to zero, the Berry curvature
vanishes everywhere except at the Dirac points where it
diverges.

5. Discussion and conclusion

Energy band structure that was obtained by Wallace
[10] was E∓(k) = ∓t

√
3 + g(k)−t′g(k) with speci�c g(k).

But in our calculation we diagonalized Hamiltonian and
plotted it in Fig. 2. In resumption the Berry curva-
ture of these states has been calculated and got zero.
Our assumption was that we do not know two symme-
tries of graphene, calculated from eigenstates. Our result
shows that the next nearest neighborhood hopping did
not break the symmetry of system. We know if the sys-
tem has time reversal symmetry, the symmetry condition
requires that Ω(−k) = −Ω(k). If the system has spa-
tial inversion symmetry, then Ω(−k) = Ω(k). Therefore,
for crystals with simultaneous time-reversal and spatial
inversion symmetry the Berry curvature vanishes iden-
tically throughout the Brillouin zone [14]. There are
many important physical systems where both symme-
tries are not simultaneously present, for example single-
-layer graphene sheet with staggered sublattice potential,
breaks inversion symmetry, so in this situation the Berry
curvature is not zero, [19] when we just consider near-
est and next nearest neighbors (without any substrate).
The Berry phase around the Dirac points becomes ex-
actly ±π, however the integration of the Berry curvature
on the Brillouin zone is zero.

Fig. 3. Berry curvature in Brillouin zone of a graphene
sheet with broken inversion symmetry.

Figure 3 shows the Berry curvature in six points of
the Brillouin zone where ∆ = 0.28 eV [14]; as is seen,
the Berry curvatures from the Dirac points can compen-
sate each other. The t′ term is isotropic around K. The
most salient feature of this term is that it is exactly sym-
metric between the A and B sublattices (as one might
perhaps anticipate from its sixfold symmetry); hence, it
gives a contribution −t′f(k), which is proportional, in
the �spinor� representation, to the unit matrix. Such a
term destroys the perfect symmetry of the band around
ϵ = 0 (since the term −t′f(k) is added to both the up-
per and the lower branches); however, it cannot spoil the
degeneracy of the two solutions at the Dirac points K
and K ′.
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