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The four-level model is used to study the nonlinear media with coincident absorption and emission bands
in both principal (S0�S1) and excited (T1�T2) channels. The excitation of molecules occurred by two light
�elds: radiations with intensity I12 at frequency ω0 tuned at the centre of absorption band of principal
singlet�singlet channel and radiations with intensity I34 at frequency ω tuned at the centre of absorption
band of excited triplet�triplet channel. The monotonic dependence of phase response of media in both princi-
pal and excited channels and the saturation processes are studied theoretically and numerically for four-level model.

PACS: 78.20.Bh, 78.20.Ci

1. Introduction

Many nonlinear phenomena in laser physics are based
on the study of nonlinear properties of matter. Four-
-wave mixing, dynamic holograms and other nonlinear
processes are interested in phase response of medium
[1�3]. The control of nonlinear processes occurs in many
works such as: control of optical bistability [4], four-
-wave mixing controlled by driving �elds [1], and re�ec-
tivity control of the dynamic PC-holograms [5]. The con-
trol of nonlinear processes occurs easily by using double-
-frequency optical excitation [6].
Complex organic compounds, dye solutions, are char-

acterized by singlet (S) and triplet (T) electronic energy
levels [7]. The electronic states contain a set of vibra-
tional sublevels with signi�cantly law life time. The tran-
sitions between singlet�singlet and triplet�triplet levels
for dye solutions corresponds to absorption in visible or
near ultraviolet (infrared) regions of spectrum.
Some theoretical and experimental works study the

nonlinear changes in a refractive index caused by transi-
tions of molecules to the excited singlet or triplet levels
[7�12]. In many cases the dye solutions can be modeled
by three-level or four-level con�gurations, depending on
the parameters of the radiations and medium.
Four-level con�guration with two light �elds, illus-

trated in Fig. 1, will be used in this work to model the
nonlinear medium. The transitions of molecules from
ground state (S0) occurred by irradiations with inten-
sity I12 at frequency ω0. At the same time the tran-
sitions of molecules from the �rst excited singlet level
(S1) to the �rst excited triplet level (T1) are radiation or
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Fig. 1. Diagram of four-level model. The solid lines de-
note the radiation-induced transitions of molecules, and
the dashed lines denote spontaneous and radiationless
transitions. S0 is the ground state; S1 is the �rst ex-
cited singlet level, T1 (T2) are the �rst (second) triplet
excited level; I12, ω0 (I34, ω) are the intensity, frequency
of radiations in principal (excited) channel.

spontaneous (dashed line in Fig. 1), where the radiation-
-induced transitions between singlet and triplet levels are
spin-forbidden. The excitation of molecules in the ex-
cited triplet channel (T1�T2) occurs by radiations with
intensity I34 at frequency ω.

2. Theory

The balance equations under a double frequencies exci-
tation of dye solution modeled by four-level con�guration
can be written as follows:

N1B12(ω0)I12 = N2(B21(ω0)I12 + vP21) +N3vP31,

N1B12(ω0)I12 = N2[B21(ω0)I12 + v(P21 + P23)],

N3B34(ω)I34 = N4[B43(ω)I34 + vP43],

N1 +N2 +N3 +N4 = N, (1)

where Ni is the population of the i-th energy level, N
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is the number of molecules in the unit volume of non-
linear medium, Pij = Aij + dij is the total probabil-
ity of spontaneous and radiationless transitions in the
i�j channel, P23 = d23 (there is no spontaneous transi-
tions between excited singlet level S1 and triplet excited
level T1), v = c/n is the light velocity in the nonlin-
ear medium. The Einstein coe�cients B12(ω0), B21(ω0)
are determined at the frequency of radiations ω0 in prin-
cipal singlet�singlet (S0�S1) channel. At the same time
B34(ω), B43(ω) are determined at frequency of radiations
ω in the excited triplet�triplet (T1�T2) channel.
The refractive index can be determined by using bal-

ance equations. In this work we will study the non-
linear medium with coincident absorption and emission
bands in both singlet�singlet (S0�S1) channel and triplet�
triplet (T1�T2) channel. In this case the real part of re-
fractive index equals zero in both channels (n12(ω0) =
0, n34(ω) = 0), and the extinction coe�cients are

κ12(ω0) =
κ0

1 + αI12
(2)

in the principal singlet�singlet channel (S0�S1) and

κ34(ω) =
κ0
34

1 + βI34
(3)

in the excited triplet�triplet (T1�T2) channel, where
κ0 = hnNB12/2 is the initial extinction coe�cient,
κ0
34 = κ0(P23/P31)B34I12/v(P21 + P23)/(1 + JI12) is the

extinction coe�cient in the excited channel at intensity
I34 = 0, J = [B12(1 + P23/P31) + B21]/v(P21 + P23),
α = (J + bI34)/(1 + aI34), β = (a + bI12)/(1 + JI12),
a = B43/vP43 and b = aJ + (P23/P31)B12B34/v

2(P21 +
P23)P43.
The saturation intensity is de�ned as the value of radi-

ation intensity for which the absorption is decreasing at
half of its initial value. Using this de�nition and Eqs. (2)
and (3) we can �nd

Isat12 =
1

α
=

J + bI34
1 + aI34

, (4)

for principal singlet�singlet channel (S0�S1) and

Isat34 =
1

β
=

a+ bI12
1 + JI12

(5)

for excited triplet�triplet channel (T1�T2).

3. Results and analysis

From Eqs. (4), (5) the saturation intensity in principal
singlet�singlet channel (S0�S1) (I

sat
12 ) decreases with the

increase of radiation intensity I34 in the excited triplet�
triplet channel (T1�T2), and the saturation intensity in
excited triplet�triplet channel (T1�T2) (I

sat
34 ) has a mono-

tonic dependence on radiation intensity I12 in principal
singlet�singlet channel (S0�S1). Taking into considera-
tion a nonlinear medium with a Gaussian form of coin-
cident mirror-symmetric absorption and emission bands
(ωij = ωji ⇒ δij = (ωij − ωji)/∆ij = 0), where ∆ij and
ωij are the pro�le halfwidth and the centre of i�j chan-

nel. For this matter the radiations in principal singlet�
singlet channel (S0�S1) are tuned at the centre of ab-
sorption band (ω0 = ω12) and the radiations in excited
triplet�triplet channel (T1�T2) are tuned at the centre of
absorption band (ω = ω34).
For numerical analysis of Eqs. (2) and (3), the radia-

tion intensities in principal channel (I12) are normalized
to intensity v(P21 + P23)/B

max
12 and the radiation inten-

sities in excited channel (I34) are normalized to intensity
vP43/B

max
34 . The ratios of spontaneous and radiation-

less transitions are P43/(P21 + P23) = P23/P31 = 10. At
the same time the extinction coe�cients in principal and
excited channels κ12(ω0), κ34(ω) are normalized to the
value of initial extinction coe�cient κ0 in Figs. 2 and 3.
For Fig. 4 the extinction coe�cient in excited channel
κ34(ω) is normalized to the value κ0

34 of extinction coef-
�cient in excited channel.

Fig. 2. Dependence of extinction coe�cient in princi-
pal channel χ12/χ0 on: radiation intensity: In12 (a),
In34 (b). Curves: 1, 2, 3, 4 and 5 at: (a) In34 = 0.01,
0.1, 1, 10 and 100, (b) In12 = 0.01, 0.1, 1, 10 and 100 for
frequency tuning η12 = η34 = 0.

Equation (2) and Fig. 2 show the monotonic de-
pendence of extinction coe�cient in principal channel
κ12(ω0) on radiation intensity I12, Fig. 2a, for di�erent
intensities of radiations in excited channel I34 and on ra-
diation intensity in the excited channel I34, Fig. 2b, for
di�erent intensities of radiations in principal channel I12.
Equation (3) and Fig. 3 show the monotonic depen-

dence of extinction coe�cient in excited channel κ34(ω)
on radiation intensity I34, Fig. 3a, for di�erent intensi-
ties of radiations in principal channel I12. This �gure
illustrates the monotonic dependence of κ34(ω) on ra-
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Fig. 3. Dependence of extinction coe�cient in excited
channel χ34/χ0 on radiation intensity: In34 (a), In12 (b).
Curves: 1, 2, 3, 4 and 5 at: (a) In12 = 0.01, 0.1, 1, 10
and 100, (b) In34 = 0.01, 0.1, 1, 10 and 100 for frequency
tuning η12 = η34 = 0.

Fig. 4. Dependence of extinction coe�cient in excited
channel χ34/χ

0
34 on radiation intensity: In34. Curves: 1,

2, 3, 4 and 5 at: In12 = 0.01, 0.1, 1, 10 and 100 for
frequency tuning η12 = η34 = 0.

diation intensity in the principal channel I12 for di�er-
ent intensities of radiations in excited channel I34. The
extinction coe�cient in excited channel (κ34(ω)), which
is normalized to initial extinction coe�cient in excited
channel (κ0

34), is illustrated in Fig. 4. This �gure shows
the monotonic dependence of extinction coe�cient in ex-
cited channel (κ34(ω)) on radiation intensity in this chan-
nel I34.

4. Conclusion

For medium with coincident mirror-symmetric absorp-
tion and emission bands, the extinction coe�cient in
the principal channel decreases with increasing the in-
tensities in both principal and excited channels. At the
same time the extinction coe�cient in excited channel
decreases with increasing the intensity in excited chan-
nel but increases with increasing the intensity in principal
channel.
The saturation processes, in the given channel, depend

on the easy controlled intensity of radiations in the other
channel.
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