
Vol. 122 (2012) ACTA PHYSICA POLONICA A No. 1
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The �exoelectric e�ect provides a linear coupling between electric polarization and orientational deformation
in liquid crystals. It in�uences many electrooptical phenomena and it is used in some bistable nematic devices.
A statistical theory of dipole �exoelectric polarization in biaxial nematic liquid crystals is used to calculate
temperature dependence of order parameters, elastic constants, and �exoelectric coe�cients. The splitting of
the two Meyer �exoelectric coe�cients and the appearance of new �exoelectric coe�cients is obtained at the
uniaxial-biaxial nematic transition. The ordering of the split �exoelectric coe�cients corresponds to the ordering
of the split elastic constants.

PACS: 61.30.Cz, 77.84.Nh

1. Introduction

The biaxial nematic liquid crystals were �rst predicted
by Freiser [1], who showed that molecules with shapes
that deviate from cylindrical symmetry could possess a
nematic phase with three distinct optical axes. A biaxial
nematic phase was �rst observed in a lyotropic mixture
by Yu and Saupe [2] in 1980 but the existence of a ther-
motropic biaxial system was not certain for many years.
Several reports appeared in 2004 on thermotropic liq-
uid crystals formed by side-chain polymers [3], bent-core
molecules [4, 5], and tetrapodes [6]. The number of new
biaxial systems is constantly growing.
Many theoretical papers [7] and computer simulations

[8] show that the molecular shape and pair interaction
biaxiality are important for the biaxial phase to exist.
However, very often real systems favour packing in the
smectic or crystalline biaxial phases. It is a challenge for
the theory to �nd factors responsible for absolute sta-
bility of the biaxial nematic phase. It was shown that
�uctuations in molecular shape can in�uence the biax-
ial nematic phase stability [9]. The motivation for this
search ranges from purely academic interest to the po-
tential usage of these materials in faster displays, where
in principle the commutation of the secondary director
should give lower response times compared to the conven-
tional twisted nematic and ferroelectric smectic devices.
A static electric �eld imposed on a nematic liquid crys-

tal have many physical e�ects, but the most important
are two of them. One is connected with the anisotropy

∗
e-mail: andrzej.kapanowski@uj.edu.pl

of the dielectric constant. The second e�ect is the ap-
pearance of the spontaneous polarization in a deformed
liquid crystal; this is called the �exoelectric (FE) e�ect.
Conversely, an electric �eld may induce distortions in the
bulk. In 1969 Meyer showed that it is a steric e�ect due
to the shape asymmetry of polar molecules [10]. In case
of nonpolar molecules the FE e�ect originates from a gra-
dient of quadrupole moment density [11].
The two FE coe�cients were introduced by Meyer

for splay and bend distortions of the uniaxial nematic
phase [10]. Recently, a statistical theory for the dipole
FE polarization was derived in the case of the biaxial ne-
matic phase composed of C2v molecules [12]. There are
six splay-bend deformations of the biaxial nematic phase
and thus six FE coe�cients are de�ned, but only �ve of
them are independent. General microscopic expressions
for the FE coe�cients involve the one-particle distribu-
tion function and the potential energy of two-body short-
-ranged interactions.
The FE e�ect has a large in�uence on many phenom-

ena in liquid crystals: electrooptical phenomena and de-
fect formation, for instance. It plays a key role in some
device applications. Flexoelectric switching is important
in bistable displays [13�15]. Flexoelectric coupling in chi-
ral and twisted nematic crystals [16] leads to a linear
rotation of the optic axis and also leads to device appli-
cations [17]. This �exoelectric-optic e�ect can be studied
in the uniform lying helix con�guration or in the uniform
standing helix con�guration [18]. Flexoelectric coupling
in smectic liquid crystals has been shown to stabilize he-
lical structures [19]. The FE e�ect was shown to sta-
bilise blue phases and strongly widen their temperature
range [20].

(146)
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The FE polarization appears when some nematic dis-
tortions break the symmetry of the phase. Let us note
that another way of breaking the nematic symmetry is
to vary in space the order parameter, for example in the
vicinity of a boundary surface. In that case, the ordo-
-electric polarization appears [21]. Recently, the in�uence
of the �exoelectricity and the order electricity on the sta-
bility of defect structures was studied in nematic droplets
with planar and homeotropic surface anchoring [22].
The purpose of this study is to calculate the values

of the FE coe�cients and other material parameters for
model systems. The proper form of the interaction poten-
tial energy allows us to calculate the temperature depen-
dence of the order parameters, the FE coe�cients, and
the elastic constants. The uniaxial and biaxial nematic
phases are considered.

2. Description of the system

Let us consider a set of N molecules contained in a
volume V , at the temperature T . The molecules are rigid
blocks (C2v symmetry) with three translational and three
rotational degrees of freedom. It is assumed that the
molecules interact via two-body short-range forces that
depend on the distance between the molecules (u = r2−
r1 = u∆) and their orientations described by the three
Euler angles R = (ϕ, θ, ψ) or by the three orthonormal
vectors (l,m,n).
The microscopic free energy F for the system is given

by
F = Fent + Fint, (1)

βFent =

∫
drdRG(r, R)[ln(G(r, R)Λ)− 1], (2)

βFint =

− 1

2

∫
dr1dR1dr2dR2G(r1, R1)G(r2, R2)f12. (3)

Here f12 = exp(−βΦ12)−1 is the Mayer function, Φ12 �
the potential energy of interactions, dR = dϕdθ sin θdψ,
β = 1/(kBT ), and Λ is related to the ideal gas properties.
The one-particle distribution function G has the normal-
ization∫

drdRG(r, R) = N. (4)

The equilibrium distribution G minimizing the free en-
ergy (1) satis�es the equation

ln(G(r1, R1)Λ)−
∫

dr2dR2G(r2, R2)f12 = const. (5)

For the homogeneous phase G = G0 does not depend on
the position and it has the form [23]:

G0(R) = G0(l ·L, l ·N , n ·L, n ·N), (6)

where the orthonormal vectors (L,M ,N) de�ne the bi-
axial nematic phase axes. In practice we characterize the
alignment not through the full function G, but by some
numerical parameters � order parameters. In the case
of the biaxial nematic phase the main order parameters

are the orientational distribution averages of the follow-
ing four functions [24]: F (2)

00 , F (2)
02 , F (2)

20 , and F
(2)
22 . We

note that there are other notations [25]. In the uniaxial
nematic phase the functions F (2)

00 and F (2)
02 have nonzero

averages only. The molecule alignment can be also de-
scribed by order tensors Q which are often calculated for
computer simulations [26] where the molecular and labo-
ratory axes must be distinguished. The order tensors are
de�ned as

Qll
αβ = (3lαlβ − δαβ)/2, (7)

Qmm
αβ = (3mαmβ − δαβ)/2, (8)

Qnn
αβ = (3nαnβ − δαβ)/2. (9)

In our calculations we use diagonal values of the tensors
Qll

αβ and Qnn
αβ . In the case of the perfect uniaxial nematic

phase composed of the rod-like molecules and oriented
along the Z axis, we get Qnn

xx = Qnn
yy = −1/2, Qnn

zz = 1,
Qll

xx = Qll
yy = 1/4, and Qll

zz = −1/2. Let us note that
Qll

xx and Qll
yy are positive. In the case of the perfect

biaxial nematic phase we have Qll
xx = Qmm

yy = Qnn
zz = 1.

3. Elastic deformations of the phase

Orientational ordering of biaxial nematics is usually
described by the three orthonormal vectors

L = R1αeα, M = R2αeα, N = R3αeα, (10)
where (ex,ey, ez) is a space-�xed reference frame. The
matrix elements Riα (i = 1, 2, 3 and α = x, y, z) sat-
isfy the conditions that express the orthogonality and
the completeness of the local frame

RiαRjα = δij , RiαRiβ = δαβ . (11)
In the homogeneous phase the vectors (L,M ,N) are
constant in space, but in a deformed phase they depend
on the position in space. In a continuum approach the
distortion free-energy density fd is obtained as an expan-
sion about an undistorted reference state with respect to
gradients of the vectors (L,M ,N). The form of the fd
can be derived in many alternative ways but we use the
form presented by Stallinga and Vertogen [27] (the sur-
face terms are neglected):

fd =
1

2
K1111(D11)

2 +
1

2
K1212(D12)

2 +
1

2
K1313(D13)

2

+
1

2
K2121(D21)

2 +
1

2
K2222(D22)

2 +
1

2
K2323(D23)

2

+
1

2
K3131(D31)

2 +
1

2
K3232(D32)

2 +
1

2
K3333(D33)

2

+K1122D11D22 +K1133D11D33 +K2233D22D33

+K1221D12D21 +K1331D13D31 +K2332D23D32,

(12)

Dij =
1

2
ϵjklRiαRkβ∂αRlβ . (13)

Microscopic expressions for the elastic constants Kijkl
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were derived in [23] and it was shown that there are 12
independent bulk constants because

K1221 = K1122, K1331 = K1133, K2332 = K2233.

(14)

4. Flexoelectric polarization

Liquid crystalline phases often consist of polar
molecules but in homogeneous nematic phases the av-
erage polarization is zero. On the other hand, a phase
distortion can produce a polarization and this is called
the FE e�ect. In a continuum approach the FE polariza-
tion of the biaxial nematic phase depends on the spatial
derivatives of the vectors (L,M ,N) [12]:

Pα =
∑
i

(siiRiα∂βRiβ + biiRiβ∂βRiα). (15)

The parameters sii and bii (i = 1, 2, 3) are not unique
because if we add any constant to all of them, the polar-
ization will not change. The physical FE coe�cients ai
(i = 4, . . . , 9) are

a4 = s33 − b11, a5 = s22 − b11, a6 = s33 − b22,

a7 = s11 − b22, a8 = s22 − b33, a9 = s11 − b33.

(16)
The coe�cients satisfy the identity

a4 − a5 − a6 + a7 + a8 − a9 = 0. (17)

Deformations of the biaxial nematic phase connected
with the FE e�ect are given in Table I. In the case of
the uniaxial nematic phase the FE polarization has the
form

Pα = e1Nα∂βNβ + e3Nβ∂βNα. (18)

TABLE I

Deformations of the biaxial nematic phase connected
with the FE e�ect. The corresponding elastic constants
and the FE coe�cients are given, the values for the uni-
axial nematic phase are in parentheses.

Deformation Elastic constant FE coe�cient

N splay, L bend K1212 (K1) a4 (e1)

M splay, L bend K1313 (0) a5 (0)

N splay, M bend K2121 (K1) a6 (e1)

L splay, M bend K2323 (0) a7 (0)

M splay, N bend K3131 (K3) a8 (−e3)

L splay, N bend K3232 (K3) a9 (−e3)

Let us de�ne the molecule electric dipole moment as
µα = µ1lα + µ2mα + µ3nα. (19)

In the case of the molecular iteractions described below,
the FE coe�cients can be expressed as follows:

a4 =

∫
dudR1dR2f12G0(R1)µ3n1z

× (−ux)(U2z −W2x), (20)

a5 =

∫
dudR1dR2f12G0(R1)µ3n1y(−ux)U2y, (21)

a6 =

∫
dudR1dR2f12G0(R1)µ3n1zuyW2y, (22)

a7 =

∫
dudR1dR2f12G0(R1)µ3n1xuyU2y, (23)

a8 =

∫
dudR1dR2f12G0(R1)µ3n1y(−uz)W2y, (24)

a9 =

∫
dudR1dR2f12G0(R1)µ3n1xuz(U2z −W2x),

(25)
where it is assumed that n de�nes the molecule C2 axis
and

Uα = ∂1G0lα + ∂3G0nα, Wα = ∂2G0lα + ∂4G0nα.

(26)

5. Results

We performed our calculations for the square-well po-
tential energy of the form

Φ12(u/σ) =


+∞ for (u/σ) < 1,

−ϵ for 1 < (u/σ) < 2,

0 for (u/σ) > 2,

(27)

were ϵ is the depth of the well and σ depends on the
molecule orientations and on the vector ∆:

σ = σ0 + σ1(∆ · n1 −∆ · n2)

+σ2
[
(∆ · n1)

2 + (∆ · n2)
2
]

+σ3
[
(∆ · l1)2 + (∆ · l2)2

]
. (28)

The parameter σ0 de�nes the length scale, σ1 de�nes the
FE term, σ2 and σ3 de�ne biaxial nematic terms. We
used the density NVmol/V = 0.1, the molecule volume
Vmol was estimated from the mutually excluded volume.
The FE coe�cients were expressed in µi/σ

2
0 , the elastic

constants in ϵ/σ0, and the temperature in ϵ/kB. The
parameters σi are given in Table II. The two physical
systems are considered that consist of wedge-shaped and
banana-shaped molecules.

TABLE II
Parameters σi used in calculations.

Molecules σ1/σ0 σ2/σ0 σ3/σ0
Long
axis

Short
axis

C2

axis

wedge-like 0.2 0.5 −0.4 n l n

banana-like 0.2 −0.4 0.5 l n n

5.1. Wedge-shaped biaxial molecules

In the system of wedge-shaped biaxial molecules, on
decreasing the temperature we meet the �rst order tran-
sition from the isotropic to the uniaxial nematic phase at
TIN = 0.618 and the second order transition to the biaxial
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nematic phase at TNB = 0.401. The temperature depen-
dence of the order tensors is presented in Fig. 1. The
temperature dependence of the elastic constants and the
FE coe�cients are presented in Figs. 2 and 3, respec-
tively.

Fig. 1. The temperature dependence of the order ten-
sors for wedge-shaped biaxial molecules.

Fig. 2. The temperature dependence of the elastic con-
stants for wedge-shaped biaxial molecules. The squares,
triangles, and circles denote deformations with N splay,
N bend, and N constant, respectively. The empty
(�lled) symbols indicate the larger (smaller) parameter.

The values of Qnn
zz show that long molecule axes are

directed along the Z axis in the whole nematic region,
whereas the values of Qll

xx reveal the alignment of short
molecule axes along the X axis and it is enhanced in the
biaxial nematic phase. On the other hand, the values of
Qll

yy decrease after the transition from the uniaxial ne-
matic to the biaxial nematic phase and change the sign
from positive to negative. The splay elastic constant K1

splits into K1212 and K2121. The bend elastic constant
K3 splits into K3232 and K3131. Let us note that the
equality K1 = K3 is accidental and results from neglect-
ing order parameters F (j)

µν with j > 2. The splay FE co-
e�cient e1 splits into a4 and a6 (a4 > a6 > 0). The bend

Fig. 3. The temperature dependence of the �exoelec-
tric coe�cients for wedge-shaped biaxial molecules.
Symbols have the same meaning as in Fig. 2.

FE coe�cient −e3 splits into a8 and a9 (0 > a8 > a9).
The coe�cients a5 and a7 are small and almost always
negative.

5.2. Banana-shaped biaxial molecules

In the system of banana-shaped biaxial molecules, on
decreasing the temperature we meet the �rst order tran-
sition from the isotropic to the uniaxial nematic phase at
TIN = 0.595 and the second order transition to the biaxial
nematic phase at TNB = 0.382. The temperature depen-
dence of the order tensors is presented in Fig. 4. The
temperature dependence of the elastic constants and the
FE coe�cients are presented in Figs. 5 and 6, respec-
tively.

Fig. 4. The temperature dependence of the order ten-
sors for banana-shaped biaxial molecules.

According to the values of Qll
zz long molecule axes are

directed along the Z axis in the whole nematic region,
whereas the values of Qnn

xx show the alignment of short
molecule axes along the X axis and it is enhanced in the
biaxial nematic phase. The values of Qnn

yy decrease and
change the sign from positive to negative near the tran-
sition from the uniaxial nematic to the biaxial nematic
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Fig. 5. The temperature dependence of the elastic con-
stants for banana-shaped biaxial molecules. Symbols
have the same meaning as in Fig. 2.

Fig. 6. The temperature dependence of the �exoelec-
tric coe�cients for banana-shaped biaxial molecules.
Symbols have the same meaning as in Fig. 2.

phase. The behaviour of the elastic constants is similar
to the case of the wedge-shaped molecules because the
FE term is small in both cases. The bend FE coe�cient
−e3 splits into a8 and a9 (0 > a8 > a9). The splay
FE coe�cient e1 is smaller than e3 and it splits into a4
and a6. The coe�cients a5 and a7 are again small but
comparable with a4 and a6. The sign of some coe�cients
can change on changing the temperature.

6. Conclusions

In this paper, the statistical theory was used to study
the temperature dependence of the order parameters,
elastic constants, and FE coe�cients of biaxial nematic
liquid crystals. In order to calculate these macroscopic
parameters one needs the one-particle distribution func-
tion and the potential energy of molecular interactions.
The two physical systems were considered. The splittings
of the FE coe�cients and the elastic constants were ob-
tained at the uniaxial-biaxial nematic transition. New
small FE coe�cients appeared at the transition. The

ordering of the split FE coe�cients corresponds to the
ordering of the split elastic constants.
The FE coe�cients were proportional to the dipole mo-

ment component parallel to the molecule C2v symmetry
axis. This was the result of the interactions potential
symmetry. The beaviour of the main FE coe�cients, e1
for the wegde-shaped molecules and e3 for the banana-
-shaped molecules, is clear and it is in agreement with
previous studies [28]. On the other hand, it seems that
other FE coe�cients should be interpreted with caution.
It is possible that higher order parameters can have a
signi�cant contribution.
At present stage, the direct comparison between the

theory and the experiment in not possible because to our
knowledge the FE coe�cients have not been measured for
the biaxial nematic phase. What is more, even for the
uniaxial nematic phase the experimental data are still
scarce and sometimes contradictory [29]. However, when
biaxial nematic phases become more widespread, the pre-
sented theory will be helpful in practical applications.
In the case of the uniaxial nematic phase, the FE coe�-

cients can be measured using hybrid-aligned nematic [30]
or twisted nematic (TN) [31, 32] devices with in-plane
switching electric �elds. Recently, Outram and Elston
[33] employed a crystal rotation method to measure the
di�erence e1 − e3 in a TN cell. Values of e1 − e3 for E7
were measured to be 7.8±1.0 pC/m at 298 K. E7 is a four-
-component mixture composed of cyano-based calamitic
molecules (5CB, 7CB, 80CB, 5CT). The elastic constants
were K1 = 10.7 pN, K2 = 6.5 pN, and K3 = 16 pN.
The experimental nematic-isotropic phase transition is
331 K. Molecular dynamics simulations of E7 were re-
ported by Pelaez and Wilson [34]. We would like to give
estimates from our theory assuming reasonable values of
the model parameters. If we assume the molecular length
σ0 = 10 Å, the interaction energy ϵ = 0.1 eV, and the
electric dipole µ = 3 D (for 5CB alone it is 4.85 D),
then we can estimate the values of the FE coe�cients
µ/σ2

0 = 10 pC/m, the elastic constants ϵ/σ0 = 16 pN,
and the temperature scale ϵ/kB = 1160 K.
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